Skip to main content

Advertisement

Log in

Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

taken from literature and mentioned below the respective target gene

Similar content being viewed by others

Data availability

Not applicable.

Code availability

Not applicable.

Abbreviations

AEG1:

Astrocyte elevated gene1

ATF2:

Activating transcription factor 2

BCAP31:

B cell receptor-associated protein 31

CASP3:

Caspase-3

CBX4:

Polycomb chromobox 4

CC:

Cervical cancer

CDC42:

Cell division control protein 42 homolog

CDH11:

C adherin 11

CDK:

Cyclin-dependent kinases

CHL1:

Close homolog of L1

CIN:

Cervical intraepithelial neoplasia

DBMT 3a:

DNA methyltransferase 3a

DNMT1:

DNA-methyltransferase 1

EMT:

Epithelial-mesenchymal transition

EZH2:

Enhancer of zeste homolog 2

FGF7:

Fibroblast growth factor 7

FIGO:

International federation of gynaecology and obstetrics

FOXO:

Forehead box protein O

FSTL1:

Follistatin like 1

GOLM1:

Golgi membrane protein 1

HMGA1:

High mobility group AT hook1

HPV:

Human papilloma virus

KLK10:

Kallikrein-related peptidase 10

MAPK:

MAP kinase

miR/miRNA:

MicroRNA

MKK3:

Mitogen-activated protein kinase kinase 3

MMP:

Matrix metalloproteinase

MST2:

Mammalian sterile 20-like kinase 2

PCNA:

Proliferating cell nuclear antigen

PDCD4:

Programmed cell death protein 4

PKM2:

Pyruvate kinase muscle isozyme M2

PTX3:

Pentraxin 3

REV3L:

RAD51B and reversionless 3-like

SIL:

Squamous intraepithelial lesions

THBS2:

Thrombospondin-2

TIMP:

Tissue inhibitors of metalloproteinase

TRIM3:

Tripartite motif-containing 3

TWIST2:

Twist family BHLH transcription factor 2

VEGFA:

Vascular endothelial growth factor A

WDHD1:

WD repeat and HMG-box DNA binding protein 1

ZEB1:

Zinc finger E-box-binding homeobox 1

References

  1. Arbyn M, Weiderpass E, Bruni L et al (2018) Estimates of incidence and mortality of cervical cancer in 2018: a worldwide analysis. Lancet Glob Health 8:e191–e203. https://doi.org/10.1016/S2214-109X(19)30482-6

    Article  Google Scholar 

  2. Bray F, Ferlay J, Soerjomataram I et al (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  3. Ferlay J, Colombet M, Soerjomataram I et al (2018) Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int J Cancer 144:1941–1953. https://doi.org/10.1002/ijc.31937

    Article  CAS  PubMed  Google Scholar 

  4. Jiang X, Tang H, Chen T (2018) Epidemiology of gynecologic cancers in China. J Gynecol Oncol 29:e7. https://doi.org/10.3802/jgo.2018.29.e7

    Article  PubMed  Google Scholar 

  5. Sharma G, Dua P, Agarwal SM (2014) A Comprehensive review of dysregulated miRNAs involved in cervical cancer. Curr Genomics 15:310–323. https://doi.org/10.2174/1389202915666140528003249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Seppä K, Pitkäniemi J, Malila N, Hakama M (2016) Age-related incidence of cervical cancer supports two aetiological components: a population-based register study. BJOG 123:772–778. https://doi.org/10.1111/1471-0528.13754

    Article  PubMed  Google Scholar 

  7. Allemani C, Matsuda T, Di Carlo V et al (2018) Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries. Lancet 391:1023–1075. https://doi.org/10.1016/S0140-6736(17)33326-3

    Article  PubMed  PubMed Central  Google Scholar 

  8. Knaul FM, Farmer PE, Krakauer EL et al (2018) Lancet Commission on Palliative Care and Pain Relief Study Group. Alleviating the access abyss in palliative care and pain relief-an imperative of universal health coverage: the Lancet Commission report. Lancet 391:1391–1454. https://doi.org/10.1016/S0140-6736(17)32513-8

    Article  PubMed  Google Scholar 

  9. Šarenac T, Mikov M (2019) Cervical cancer, different treatments and importance of bile acids as therapeutic agents in this disease. Front Pharmacol 10:484. https://doi.org/10.3389/fphar.2019.00484

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sathyanarayanan A, Chandrasekaran KS, Karunagaran D (2017) microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. Cell Oncol (Dordr) 40:119–131. https://doi.org/10.1007/s13402-016-0307-3

    Article  CAS  Google Scholar 

  11. Zheng G, Peng C, Jia X et al (2015) ZEB1 transcriptionally regulated carbonic anhydrase 9 mediates the chemoresistance of tongue cancer via maintaining intracellular pH. Mol Cancer 14:84. https://doi.org/10.1186/s12943-015-0357-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Asiaf A, Ahmad ST, Mohammad SO, Zargar MA (2014) Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection. Eur J Cancer Prev 23:206–224. https://doi.org/10.1097/CEJ.0b013e328364f273

    Article  CAS  PubMed  Google Scholar 

  13. Organization WH (2017) Human papillomavirus vaccines: WHO position paper recommendations. Vaccine 35:5753–5755

    Article  Google Scholar 

  14. Chaturvedi AK (2010) Beyond cervical cancer: burden of other HPV-related cancers among men and women. J Adolesc Health 46:S20-26. https://doi.org/10.1016/j.jadohealth.2010.01.016

    Article  PubMed  Google Scholar 

  15. Fani M, Mahmoodi P, Emadzadeh M et al (2020) Correlation of human papillomavirus 16 and 18 with cervical cancer and their diagnosis methods in Iranian women: a systematic review and meta-analysis. Curr Probl Cancer 44:100493. https://doi.org/10.1016/j.currproblcancer.2019.06.008

    Article  PubMed  Google Scholar 

  16. Boyer SN, Wazer DE, Band V (1996) E7 protein of human papilloma virus-16 induces degradation of retinoblastoma protein through the ubiquitin-proteasome pathway. Cancer Res 56:4620–4624

    CAS  PubMed  Google Scholar 

  17. Sultana F, English DR, Simpson JA et al (2014) Rationale and design of the iPap trial: a randomized controlled trial of home-based HPV self-sampling for improving participation in cervical screening by never- and under-screened women in Australia. BMC Cancer 14:207. https://doi.org/10.1186/1471-2407-14-207

    Article  PubMed  PubMed Central  Google Scholar 

  18. Cohen PA, Jhingran A, Oaknin A, Denny L (2019) Cervical cancer. Lancet 393:169–182. https://doi.org/10.1016/S0140-6736(18)32470-X

    Article  PubMed  Google Scholar 

  19. Banno K, Iida M, Yanokura M, Kisu I et al (2014) MicroRNA in cervical cancer: OncomiRs and tumor suppressor miRs in diagnosis and treatment. Sci World J 2014:178075. https://doi.org/10.1155/2014/178075

    Article  CAS  Google Scholar 

  20. Jonas S, Izaurralde E (2015) Towards a molecular understanding of microRNA-mediated gene silencing. Nat Rev Genet 16:421–433. https://doi.org/10.1038/nrg3965

    Article  CAS  PubMed  Google Scholar 

  21. Makarova JA, Shkurnikov MU, Wicklein D et al (2016) Intracellular and extracellular microRNA: An update on localization and biological role. Prog Histochem Cytochem 51:33–49. https://doi.org/10.1016/j.proghi.2016.06.001

    Article  PubMed  Google Scholar 

  22. Vasudevan S (2012) Posttranscriptional upregulation by microRNAs. Wiley Interdiscip Rev RNA 3:311–330. https://doi.org/10.1002/wrna.121

    Article  CAS  PubMed  Google Scholar 

  23. O’Brien J, Hayder H, Zayed Y, Peng C (2018) Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne) 9:402. https://doi.org/10.3389/fendo.2018.00402

    Article  CAS  Google Scholar 

  24. Friedman RC, Farh KK, Burge CB, Bartel DP (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19:92–105. https://doi.org/10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cui M, Wang H, Yao X et al (2019) Circulating MicroRNAs in cancer: potential and challenge. Front Genet 10:626. https://doi.org/10.3389/fgene.2019.00626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chaiwongkot A, Vinokurova S, Pientong C et al (2013) Differential methylation of E2 binding sites in episomal and integrated HPV 16 genomes in preinvasive and invasive cervical lesions. Int J Cancer 132:2087–2094. https://doi.org/10.1002/ijc.27906

    Article  CAS  PubMed  Google Scholar 

  27. Jiménez-Wences H, Peralta-Zaragoza O, Fernández-Tilapa G (2014) Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncol Rep 31:2467–2476. https://doi.org/10.3892/or.2014.3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pisarska J, Baldy-Chudzik K (2020) MicroRNA-based fingerprinting of cervical lesions and cancer. J Clin Med 9:3668. https://doi.org/10.3390/jcm9113668

    Article  CAS  PubMed Central  Google Scholar 

  29. López JA, Alvarez-Salas LM (2011) Differential effects of miR-34c-3p and miR-34c-5p on SiHa cells proliferation apoptosis, migration and invasion. Biochem Biophys Res Commun 409:513–519. https://doi.org/10.1016/j.bbrc.2011.05.036

    Article  CAS  PubMed  Google Scholar 

  30. Yang Z, Chen S, Luan X et al (2009) MicroRNA-214 is aberrantly expressed in cervical cancers and inhibits the growth of HeLa cells. IUBMB Life 61:1075–1082. https://doi.org/10.1002/iub.252

    Article  CAS  PubMed  Google Scholar 

  31. Felekkis K, Touvana E, Stefanou Ch, Deltas C (2010) microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia 14:236–240

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Li Y, Zhang Y, Li X et al (2019) Gain-of-function mutations: an emerging advantage for cancer biology. Trends Biochem Sci 44:659–674. https://doi.org/10.1016/j.tibs.2019.03.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Corcoran C, Friel AM, Duffy MJ et al (2011) Intracellular and extracellular microRNAs in breast cancer. Clin Chem 57:18–32. https://doi.org/10.1373/clinchem.2010.150730

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Luo YP (2015) MicroRNAs in breast cancer: oncogene and tumor suppressors with clinical potential. J Zhejiang Univ Sci B 16:18–31. https://doi.org/10.1631/jzus.B1400184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dai Q, Li J, Zhou K, Liang T (2015) Competing endogenous RNA: a novel posttranscriptional regulatory dimension associated with the progression of cancer. Oncol Lett 10:2683–2690. https://doi.org/10.3892/ol.2015.3698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Glenfield C, Pseudogenes MA (2018) Provide evolutionary evidence for the competitive endogenous RNA hypothesis. Mol Biol Evol 35:2886–2899. https://doi.org/10.1093/molbev/msy183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Mitra A, Pfeifer K, Park KS (2018) Circular RNAs and competing endogenous RNA (ceRNA) networks. Transl Cancer Res 7:S624–S628. https://doi.org/10.21037/tcr.2018.05.12

    Article  CAS  PubMed  Google Scholar 

  38. Granados López AJ, López JA (2014) Multistep model of cervical cancer: participation of miRNAs and coding genes. Int J Mol Sci 15:15700–15733. https://doi.org/10.3390/ijms150915700

    Article  CAS  PubMed  Google Scholar 

  39. Wright TC Jr, Massad LS, Dunton CJ et al (2006) American Society for Colposcopy and Cervical Pathology-sponsored Consensus Conference. 2006 consensus guidelines for the management of women with abnormal cervical cancer screening tests. Am J Obstet Gynecol 197:346–355. https://doi.org/10.1016/j.ajog.2007.07.047

    Article  Google Scholar 

  40. Tainio K, Athanasiou A, Tikkinen KAO et al (2018) Clinical course of untreated cervical intraepithelial neoplasia grade 2 under active surveillance: systematic review and meta-analysis. BMJ 360:k499. https://doi.org/10.1136/bmj.k499

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cheung TH, Man KN, Yu MY et al (2012) Dysregulated microRNAs in the pathogenesis and progression of cervical neoplasm. Cell Cycle 11:2876–2884. https://doi.org/10.4161/cc.21278

    Article  CAS  PubMed  Google Scholar 

  42. Pereira PM, Marques JP, Soares AR et al (2010) MicroRNA expression variability in human cervical tissues. PLoS ONE 5(7):e11780. https://doi.org/10.1371/journal.pone.0011780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Long MJ, Wu FX, Li P et al (2012) MicroRNA-10a targets CHL1 and promotes cell growth, migration and invasion in human cervical cancer cells. Cancer Lett 324:186–196. https://doi.org/10.1016/j.canlet.2012.05.022

    Article  CAS  PubMed  Google Scholar 

  44. Wang X, Tang S, Le SY et al (2008) Aberrant expression of oncogenic and tumor-suppressive microRNAs in cervical cancer is required for cancer cell growth. PLoS ONE 3:e2557. https://doi.org/10.1371/journal.pone.0002557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Lajer CB, Garnæs E, Friis-Hansen L et al (2012) The role of miRNAs in human papilloma virus (HPV)-associated cancers: bridging between HPV-related head and neck cancer and cervical cancer. Br J Cancer 117(5):e2. https://doi.org/10.1038/bjc.2017.203

    Article  Google Scholar 

  46. Sammarco ML, Tamburro M, Pulliero A et al (2020) Human papillomavirus infections, cervical cancer and MicroRNAs: an overview and implications for public health. Microrna 9(3):174–186. https://doi.org/10.2174/2211536608666191026115045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wang X, Wang HK, McCoy JP et al (2009) Oncogenic HPV infection interrupts the expression of tumor-suppressive miR-34a through viral oncoprotein E6. RNA 15:637–647. https://doi.org/10.1261/rna.1442309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li Y, Wang F, Xu J et al (2011) Progressive miRNA expression profiles in cervical carcinogenesis and identification of HPV-related target genes for miR-29. J Pathol 224:484–495. https://doi.org/10.1002/path.2873

    Article  CAS  PubMed  Google Scholar 

  49. Rao Q, Shen Q, Zhou H et al (2012) Aberrant microRNA expression in human cervical carcinomas. Med Oncol 29:1242–1248. https://doi.org/10.1007/s12032-011-9830-2

    Article  CAS  PubMed  Google Scholar 

  50. Liu L, Yu X, Guo X et al (2012) miR-143 is downregulated in cervical cancer and promotes apoptosis and inhibits tumor formation by targeting Bcl-2. Mol Med Rep 5:753–760. https://doi.org/10.3892/mmr.2011.696

    Article  CAS  PubMed  Google Scholar 

  51. Xing AY, Wang B, Shi DB et al (2013) Deregulated expression of miR-145 in manifold human cancer cells. Exp Mol Pathol 95:91–97. https://doi.org/10.1016/j.yexmp.2013.05.003

    Article  CAS  PubMed  Google Scholar 

  52. Lee JW, Choi CH, Choi JJ et al (2008) Altered MicroRNA expression in cervical carcinomas. Clin Cancer Res 14:2535–2542. https://doi.org/10.1158/1078-0432.CCR-07-1231

    Article  CAS  PubMed  Google Scholar 

  53. Zhao S, Yao DS, Chen JY, Ding N (2013) Aberrant expression of miR-20a and miR-203 in cervical cancer. Asian Pac J Cancer Prev 14:2289–2293. https://doi.org/10.7314/apjcp.2013.14.4.2289

    Article  PubMed  Google Scholar 

  54. Liu W, Gao G, Hu X, Wang Y et al (2014) Activation of miR-9 by human papillomavirus in cervical cancer. Oncotarget 5:11620–11630. https://doi.org/10.18632/oncotarget.2599

    Article  PubMed  PubMed Central  Google Scholar 

  55. Bumrungthai S, Ekalaksananan T, Evans MF et al (2015) Up-regulation of miR-21 is associated with cervicitis and human papillomavirus infection in cervical tissues. PLoS ONE 10:e0127109. https://doi.org/10.1371/journal.pone.0127109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yao Q, Xu H, Zhang QQ et al (2009) MicroRNA-21 promotes cell proliferation and down-regulates the expression of programmed cell death 4 (PDCD4) in HeLa cervical carcinoma cells. Biochem Biophys Res Commun 388:539–542. https://doi.org/10.1016/j.bbrc.2009.08.044

    Article  CAS  PubMed  Google Scholar 

  57. Zhang Z, Wang J, Wang X et al (2018) MicroRNA-21 promotes proliferation, migration, and invasion of cervical cancer through targeting TIMP3. Arch Gynecol Obstet 297:433–442. https://doi.org/10.1007/s00404-017-4598-z

    Article  CAS  PubMed  Google Scholar 

  58. Shishodia G, Shukla S, Srivastava Y et al (2015) Alterations in microRNAs miR-21 and let-7a correlate with aberrant STAT3 signaling and downstream effects during cervical carcinogenesis. Mol Cancer 14:116. https://doi.org/10.1186/s12943-015-0385-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang H, Zhang Z, Wang S et al (2018) The mechanisms involved in miR-9 regulated apoptosis in cervical cancer by targeting FOXO3. Biomed Pharmacother 102:626–632. https://doi.org/10.1016/j.biopha.2018.03.019

    Article  CAS  PubMed  Google Scholar 

  60. Hou T, Ou J, Zhao X et al (2014) MicroRNA-196a promotes cervical cancer proliferation through the regulation of FOXO1 and p27Kip1. Br J Cancer 10:1260–1268. https://doi.org/10.1038/bjc.2013.829

    Article  CAS  Google Scholar 

  61. Qin W, Dong P, Ma C et al (2012) MicroRNA-133b is a key promoter of cervical carcinoma development through the activation of the ERK and AKT1 pathways. Oncogene 31:4067–4075. https://doi.org/10.1038/onc.2011.561

    Article  CAS  PubMed  Google Scholar 

  62. Wang L, Wang Q, Li HL, Han LY (2013) Expression of MiR200a, miR93, metastasis-related gene RECK and MMP2/MMP9 in human cervical carcinoma–relationship with prognosis. Asian Pac J Cancer Prev 14:2113–2118. https://doi.org/10.7314/apjcp.2013.14.3.2113

    Article  PubMed  Google Scholar 

  63. Au Yeung CL, Tsang TY, Yau PL, Kwok TT (2011) Human papillomavirus type 16 E6 induces cervical cancer cell migration through the p53/microRNA-23b/urokinase-type plasminogen activator pathway. Oncogene 30:2401–2410. https://doi.org/10.1038/onc.2010.613

    Article  CAS  PubMed  Google Scholar 

  64. Bierkens M, Krijgsman O, Wilting SM et al (2013) Focal aberrations indicate EYA2 and hsa-miR-375 as oncogene and tumor suppressor in cervical carcinogenesis. Genes Chromosomes Cancer 52:56–68. https://doi.org/10.1002/gcc.22006

    Article  CAS  PubMed  Google Scholar 

  65. Peng R, Cheng X, Zhang Y et al (2020) miR-214 down-regulates MKK3 and suppresses malignant phenotypes of cervical cancer cells. Gene 724:144146. https://doi.org/10.1016/j.gene.2019.144146

    Article  CAS  PubMed  Google Scholar 

  66. Kogo R, How C, Chaudary N et al (2015) The microRNA-218~Survivin axis regulates migration, invasion, and lymph node metastasis in cervical cancer. Oncotarget 6:1090–1100. https://doi.org/10.18632/oncotarget.2836

    Article  PubMed  Google Scholar 

  67. Kang HW, Wang F, Wei Q et al (2012) miR-20a promotes migration and invasion by regulating TNKS2 in human cervical cancer cells. FEBS Lett 586:897–904. https://doi.org/10.1016/j.febslet.2012.02.020

    Article  CAS  PubMed  Google Scholar 

  68. Yu J, Wang Y, Dong R et al (2012) Circulating microRNA-218 was reduced in cervical cancer and correlated with tumor invasion. J Cancer Res Clin Oncol 138:671–674. https://doi.org/10.1007/s00432-012-1147-9

    Article  CAS  PubMed  Google Scholar 

  69. Yamamoto N, Kinoshita T, Nohata N, Itesako T et al (2013) Tumor suppressive microRNA-218 inhibits cancer cell migration and invasion by targeting focal adhesion pathways in cervical squamous cell carcinoma. Int J Oncol 42:1523–1532. https://doi.org/10.3892/ijo.2013.1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Li Y, Liu J, Yuan C et al (2010) High-risk human papillomavirus reduces the expression of microRNA-218 in women with cervical intraepithelial neoplasia. J Int Med Res 38:1730–1736. https://doi.org/10.1177/147323001003800518

    Article  CAS  PubMed  Google Scholar 

  71. Wang F, Liu M, Li X, Tang H (2013) MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. FEBS Lett 587:488–495. https://doi.org/10.1016/j.febslet.2013.01.016

    Article  CAS  PubMed  Google Scholar 

  72. Hemmat N, Bannazadeh Baghi H (2019) Association of human papillomavirus infection and inflammation in cervical cancer. Pathog Dis 77:ftz048. https://doi.org/10.1093/femspd/ftz048

    Article  CAS  PubMed  Google Scholar 

  73. Fernandes JV, DE Medeiros Fernandes TA, DE Azevedo JC et al (2015) Link between chronic inflammation and human papillomavirus-induced carcinogenesis (Review). Oncol Lett 9:1015–1026. https://doi.org/10.3892/ol.2015.2884

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zeng L, Zhen Y, Chen Y et al (2014) Naringin inhibits growth and induces apoptosis by a mechanism dependent on reduced activation of NF-κB/COX-2-caspase-1 pathway in HeLa cervical cancer cells. Int J Oncol 45:1929–1936. https://doi.org/10.3892/ijo.2014.2617

    Article  CAS  PubMed  Google Scholar 

  75. Zhang J, Wu H, Li P et al (2014) NF-κB-modulated miR-130a targets TNF-α in cervical cancer cells. J Transl Med 12:155. https://doi.org/10.1186/1479-5876-12-155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Fan JY, Fan YJ, Wang XL et al (2017) miR-429 is involved in regulation of NF-κB activity by targeting IKKβ and suppresses oncogenic activity in cervical cancer cells. FEBS Lett 591:118–128. https://doi.org/10.1002/1873-3468.12502

    Article  CAS  PubMed  Google Scholar 

  77. Liu D, Liu C, Wang X et al (2014) MicroRNA-451 suppresses tumor cell growth by down-regulating IL6R gene expression. Cancer Epidemiol 38(1):85–92. https://doi.org/10.1016/j.canep.2013.12.005

    Article  CAS  PubMed  Google Scholar 

  78. Sadri Nahand J, Moghoofei M, Salmaninejad A et al (2019) Pathogenic role of exosomes and microRNAs in HPV-mediated inflammation and cervical cancer: a review. Int J Cancer 146:305–320. https://doi.org/10.1002/ijc.32688

    Article  CAS  PubMed  Google Scholar 

  79. Sun L, Wang D, Li H et al (2016) Miao, significance of high YKL-40 expression regulated by miR-24 in cervical cancer progression and prognosis. Int J Clin Exp Pathol 9:5128–5137

    CAS  Google Scholar 

  80. Chandrasekaran KS, Sathyanarayanan A, Karunagaran D (2016) Downregulation of HMGB1 by miR-34a is sufficient to suppress proliferation, migration and invasion of human cervical and colorectal cancer cells. Tumour Biol 37:13155–13166. https://doi.org/10.1007/s13277-016-5261-1

    Article  CAS  PubMed  Google Scholar 

  81. Jiang D, Wang H, Li Z et al (2017) MiR-142 inhibits the development of cervical cancer by targeting HMGB1. Oncotarget 8:4001–4007. https://doi.org/10.18632/oncotarget.13136

    Article  PubMed  Google Scholar 

  82. Chen J, Li G (2018) MiR-1284 enhances sensitivity of cervical cancer cells to cisplatin via downregulating HMGB1. Biomed Pharmacother 107:997–1003. https://doi.org/10.1016/j.biopha.2018.08.059

    Article  CAS  PubMed  Google Scholar 

  83. Fan Z, Cui H, Yu H et al (2016) MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression. Oncogenesis 5:e197. https://doi.org/10.1038/oncsis.2016.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hu Q, Song J, Ding B (2018) miR-146a promotes cervical cancer cell viability via targeting IRAK1 and TRAF6. Oncol Rep 39:3015–3024. https://doi.org/10.3892/or.2018.6391

    Article  CAS  PubMed  Google Scholar 

  85. Fan Y, Nan Y, Huang J et al (2018) Up-regulation of inflammation-related LncRNA-IL7R predicts poor clinical outcome in patients with cervical cancer. Biosci Rep 38(3):BSR20180483. https://doi.org/10.1042/BSR20180483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Rhind N, Russell P (2012) Signaling pathways that regulate cell division. Cold Spring Harb Perspect Biol 4:a005942. https://doi.org/10.1101/cshperspect.a005942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wieser S, Pines J (2015) The biochemistry of mitosis. Cold Spring Harb Perspect Biol 7:a015776. https://doi.org/10.1101/cshperspect.a015776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lim S, Kaldis P (2013) Cdks, cyclins and CKIs: roles beyond cell cycle regulation. Development 140:3079–3093. https://doi.org/10.1242/dev.091744

    Article  CAS  PubMed  Google Scholar 

  89. Bendris N, Lemmers B, Blanchard JM (2015) Cell cycle, cytoskeleton dynamics and beyond: the many functions of cyclins and CDK inhibitors. Cell Cycle 14:1786–1798. https://doi.org/10.1080/15384101.2014.998085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Gire V, Dulic V (2015) Senescence from G2 arrest, revisited. Cell Cycle 14:297–304. https://doi.org/10.1080/15384101.2014.1000134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wei YQ, Jiao XL, Zhang SY et al (2019) MiR-9-5p could promote angiogenesis and radiosensitivity in cervical cancer by targeting SOCS5. Eur Rev Med Pharmacol Sci 23:7314–7326. https://doi.org/10.26355/eurrev_201909_18837

    Article  PubMed  Google Scholar 

  92. Zubillaga-Guerrero MI, Alarcón-Romero Ldel C, Illades-Aguiar B et al (2015) MicroRNA miR-16-1 regulates CCNE1 (cyclin E1) gene expression in human cervical cancer cells. Int J Clin Exp Med 8:15999–16006

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Zhao S, Yao D, Chen J et al (2015) MiR-20a promotes cervical cancer proliferation and metastasis in vitro and in vivo. PLoS ONE 10:e0120905. https://doi.org/10.1371/journal.pone.0120905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cheng Y, Geng L, Zhao L (2017) Human papillomavirus E6-regulated microRNA-20b promotes invasion in cervical cancer by targeting tissue inhibitor of metalloproteinase 2. Mol Med Rep 16:5464–5470. https://doi.org/10.3892/mmr.2017.7231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Gómez-Gómez Y, Organista-Nava J, Ocadiz-Delgado R et al (2016) The expression of miR-21 and miR-143 is deregulated by the HPV16 E7 oncoprotein and 17β-estradiol. Int J Oncol 49:549–558. https://doi.org/10.3892/ijo.2016.3575

    Article  CAS  PubMed  Google Scholar 

  96. Del Mar D-G, Rodríguez-Aguilar ED, Meneses-Acosta A et al (2019) Transregulation of microRNA miR-21 promoter by AP-1 transcription factor in cervical cancer cells. Cancer Cell Int 19:214. https://doi.org/10.1186/s12935-019-0931-x

    Article  CAS  Google Scholar 

  97. Cai L, Wang W, Li X et al (2018) MicroRNA-21-5p induces the metastatic phenotype of human cervical carcinoma cells in vitro by targeting the von Hippel-Lindau tumor suppressor. Oncol Lett 15:5213–5219. https://doi.org/10.3892/ol.2018.7937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Zhang L, Zhan X, Yan D, Wang Z (2016) Circulating MicroRNA-21 is involved in lymph node metastasis in cervical cancer by targeting RASA1. Int J Gynecol Cancer 26:810–816. https://doi.org/10.1097/IGC.0000000000000694

    Article  PubMed  Google Scholar 

  99. Yao J, Deng B, Zheng L et al (2016) miR-27b is upregulated in cervical carcinogenesis and promotes cell growth and invasion by regulating CDH11 and epithelial-mesenchymal transition. Oncol Rep 35:1645–1651. https://doi.org/10.3892/or.2015.4500

    Article  CAS  PubMed  Google Scholar 

  100. Chen S, Gao C, Wu Y, Huang Z (2020) Identification of prognostic miRNA signature and lymph node metastasis-related Key genes in cervical cancer. Front Pharmacol 11:544. https://doi.org/10.3389/fphar.2020.00544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Yi Y, Liu Y, Wu W et al (2018) The role of miR-106p-5p in cervical cancer: from expression to molecular mechanism. Cell Death Discov 4:36. https://doi.org/10.1038/s41420-018-0096-8

    Article  CAS  PubMed  Google Scholar 

  102. Xu Y, Zhao S, Cui M, Wang Q (2015) Down-regulation of microRNA-135b inhibited growth of cervical cancer cells by targeting FOXO1. Int J Clin Exp Pathol 8:10294–10304

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Zhang Z, Wang J, Li J et al (2018) MicroRNA-150 promotes cell proliferation, migration, and invasion of cervical cancer through targeting PDCD4. Biomed Pharmacother 97:511–517. https://doi.org/10.1016/j.biopha.2017.09.143

    Article  CAS  PubMed  Google Scholar 

  104. Li N, Cui T, Guo W et al (2019) MiR-155-5p accelerates the metastasis of cervical cancer cell via targeting TP53INP1. Onco Targets Ther 12:3181–3196. https://doi.org/10.2147/OTT.S193097

    Article  PubMed  PubMed Central  Google Scholar 

  105. Tang T, Wong HK, Gu W et al (2013) MicroRNA-182 plays an onco-miRNA role in cervical cancer. Gynecol Oncol 129:199–208. https://doi.org/10.1016/j.ygyno.2012.12.043

    Article  CAS  PubMed  Google Scholar 

  106. Xu LJ, Duan Y, Wang P, Yin HQ (2018) MiR-199b-5p promotes tumor growth and metastasis in cervical cancer by down-regulating KLK10. Biochem Biophys Res Commun 503:556–563. https://doi.org/10.1016/j.bbrc.2018.05.165

    Article  CAS  PubMed  Google Scholar 

  107. Zhang F, Liu J, Xie BB (2019) Downregulation of microRNA-205 inhibits cell invasion and angiogenesis of cervical cancer through TSLC1-mediated Akt signaling pathway. J Cell Physiol 234:18626–18638. https://doi.org/10.1002/jcp.28501

    Article  CAS  PubMed  Google Scholar 

  108. Pal A, Kundu R (2020) Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front Microbiol 10:3116. https://doi.org/10.3389/fmicb.2019.03116

    Article  PubMed  PubMed Central  Google Scholar 

  109. Zhang L, Li H, Yuan M et al (2019) Cervical cancer cells-secreted exosomal microRNA-221-3p promotes invasion, migration and angiogenesis of microvascular endothelial cells in cervical cancer by down-regulating MAPK10 expression. Cancer Manage Res 11:10307–10319. https://doi.org/10.2147/CMAR.S221527

    Article  CAS  Google Scholar 

  110. Wu XG, Zhou CF, Zhang YM (2019) Cancer-derived exosomal miR-221-3p promotes angiogenesis by targeting THBS2 in cervical squamous cell carcinoma. Angiogenesis 22:397–410. https://doi.org/10.1007/s10456-019-09665-1

    Article  CAS  PubMed  Google Scholar 

  111. Song Q, An Q, Niu B et al (2019) Role of miR-221/222 in tumor development and the underlying mechanism. J Oncol 2019:7252013. https://doi.org/10.1155/2019/7252013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fu F, Wang T, Wu Z et al (2018) HMGA1 exacerbates tumor growth through regulating the cell cycle and accelerates migration/invasion via targeting miR-221/222 in cervical cancer. Cell Death Dis 9:594. https://doi.org/10.1038/s41419-018-0683-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Yu LM, Wang WW, Qi R et al (2018) MicroRNA-224 inhibition prevents progression of cervical carcinoma by targeting PTX3. J Cell Biochem 119:10278–10290. https://doi.org/10.1002/jcb.27370

    Article  CAS  PubMed  Google Scholar 

  114. Chu Y, Ouyang Y, Wang F et al (2014) MicroRNA-590 promotes cervical cancer cell growth and invasion by targeting CHL1. J Cell Biochem 115:847–853. https://doi.org/10.1002/jcb.24726

    Article  CAS  PubMed  Google Scholar 

  115. Li T, Zhou W, Li Y et al (2019) MiR-4524b-5p/WTX/β-catenin axis functions as a regulator of metastasis in cervical cancer. PLoS ONE 14:e0214822. https://doi.org/10.1371/journal.pone.0214822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Campos-Viguri GE, Peralta-Zaragoza O, Jiménez-Wences H et al (2020) MiR-23b-3p reduces the proliferation, migration and invasion of cervical cancer cell lines via the reduction of c-Met expression. Sci Rep 10:3256. https://doi.org/10.1038/s41598-020-60143-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Dong J, Sui L, Wang Q et al (2014) MicroRNA-26a inhibits cell proliferation and invasion of cervical cancer cells by targeting protein tyrosine phosphatase type IVA 1. Mol Med Rep 10:1426–1432. https://doi.org/10.3892/mmr.2014.2335

    Article  CAS  PubMed  Google Scholar 

  118. Shen W, Xie XY, Liu MR, Wang LL (2019) MicroRNA-101-5p inhibits the growth and metastasis of cervical cancer cell by inhibiting CXCL6. Eur Rev Med Pharmacol Sci 23:1957–1968. https://doi.org/10.26355/eurrev_201903_17234

    Article  CAS  PubMed  Google Scholar 

  119. Xu J, Wang H, Wang H et al (2019) The inhibition of miR-126 in cell migration and invasion of cervical cancer through regulating ZEB1. Hereditas 156:11. https://doi.org/10.1186/s41065-019-0087-7

    Article  PubMed  PubMed Central  Google Scholar 

  120. Zhao JL, Zhang L, Guo X et al (2015) miR-212/132 downregulates SMAD2 expression to suppress the G1/S phase transition of the cell cycle and the epithelial to mesenchymal transition in cervical cancer cells. IUBMB Life 67:380–394

    Article  CAS  PubMed  Google Scholar 

  121. Wang YF, Yang HY, Shi XQ, Wang Y (2018) Upregulation of microRNA-129-5p inhibits cell invasion, migration and tumor angiogenesis by inhibiting ZIC2 via downregulation of the Hedgehog signaling pathway in cervical cancer. Cancer Biol Ther 19:1162–1173. https://doi.org/10.1080/15384047.2018.1491497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ou L, Wang D, Zhang H et al (2018) Decreased expression of miR-138-5p by lncRNA H19 in cervical cancer promotes tumor proliferation. Oncol Res 26:401–410. https://doi.org/10.3727/096504017X15017209042610

    Article  PubMed  PubMed Central  Google Scholar 

  123. Cao XC, Yu Y, Hou LK et al (2016) miR-142-3p inhibits cancer cell proliferation by targeting CDC25C. Cell Prolif 49:58–68. https://doi.org/10.1111/cpr.12235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Zhou M, Chen X, Wu J et al (2018) MicroRNA-143 regulates cell migration and invasion by targeting GOLM1 in cervical cancer. Oncol Lett 16(5):6393–6400. https://doi.org/10.3892/ol.2018.9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Mou Z, Xu X, Dong M, Xu J (2016) MicroRNA-148b acts as a tumor suppressor in cervical cancer by inducing G1/S-phase cell cycle arrest and apoptosis in a caspase-3-dependent manner. Med Sci Monit 22:2809–2815. https://doi.org/10.12659/msm.896862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Sun J, Ji J, Huo G et al (2015) miR-182 induces cervical cancer cell apoptosis through inhibiting the expression of DNMT3a. Int J Clin Exp Pathol 8:4755–4763

    PubMed  PubMed Central  Google Scholar 

  127. Wang N, Wei H, Yin D et al (2016) MicroRNA-195 inhibits proliferation of cervical cancer cells by targeting cyclin D1a. Tumour Biol 37:4711–4720. https://doi.org/10.1007/s13277-015-4292-3

    Article  CAS  PubMed  Google Scholar 

  128. How C, Hui AB, Alajez NM et al (2013) MicroRNA-196b regulates the homeobox B7-vascular endothelial growth factor axis in cervical cancer. PLoS ONE 8:e67846. https://doi.org/10.1371/journal.pone.0067846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Mao L, Zhang Y, Mo W et al (2015) BANF1 is downregulated by IRF1-regulated microRNA-203 in cervical cancer. PLoS ONE 10(2):e0117035. https://doi.org/10.1371/journal.pone.0117035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Zhu X, Er K, Mao C et al (2013) miR-203 suppresses tumor growth and angiogenesis by targeting VEGFA in cervical cancer. Cell Physiol Biochem 32(1):64–73. https://doi.org/10.1159/000350125

    Article  CAS  PubMed  Google Scholar 

  131. Li N, Guo X, Liu L et al (2019) Molecular mechanism of miR-204 regulates proliferation, apoptosis and autophagy of cervical cancer cells by targeting ATF2. Artif Cells Nanomed Biotechnol 47:2529–2535. https://doi.org/10.1080/21691401.2019.1628038

    Article  PubMed  Google Scholar 

  132. Wu L, Li H, Jia CY et al (2012) MicroRNA-223 regulates FOXO1 expression and cell proliferation. FEBS Lett 586:1038–1043. https://doi.org/10.1016/j.febslet.2012.02.050

    Article  CAS  PubMed  Google Scholar 

  133. Yang S, Zhang X, Sun Y et al (2020) MicroRNA-362-3p inhibits migration and invasion via targeting BCAP31 in cervical cancer. Front Mol Biosci 7:107. https://doi.org/10.3389/fmolb.2020.00107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tian RQ, Wang XH, Hou LJ et al (2011) MicroRNA-372 is down-regulated and targets cyclin-dependent kinase 2 (CDK2) and cyclin A1 in human cervical cancer, which may contribute to tumorigenesis. J Biol Chem 286:25556–25563. https://doi.org/10.1074/jbc.M111.221564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Jayamohan S, Kannan M, Moorthy RK et al (2019) Dysregulation of miR-375/AEG-1 axis by human papillomavirus 16/18-E6/E7 promotes cellular proliferation, migration, and invasion in cervical cancer. Front Oncol 9:847. https://doi.org/10.3389/fonc.2019.00847

    Article  PubMed  PubMed Central  Google Scholar 

  136. Shang A, Zhou C, Bian G et al (2019) miR-381-3p restrains cervical cancer progression by downregulating FGF7. J Cell Biochem 120:778–789. https://doi.org/10.1002/jcb.27438

    Article  CAS  PubMed  Google Scholar 

  137. Zhou Y, An Q, Guo RX et al (2017) miR424-5p functions as an anti-oncogene in cervical cancer cell growth by targeting KDM5B via the Notch signaling pathway. Life Sci 171:9–15. https://doi.org/10.1016/j.lfs.2017.01.006

    Article  CAS  PubMed  Google Scholar 

  138. Wang Y, Dong X, Hu B et al (2016) The effects of Micro-429 on inhibition of cervical cancer cells through targeting ZEB1 and CRKL. Biomed Pharmacother 80:311–321. https://doi.org/10.1016/j.biopha.2016.03.035

    Article  CAS  PubMed  Google Scholar 

  139. Cheng L, Shi X, Huo D et al (2019) MiR-449b-5p regulates cell proliferation, migration and radioresistance in cervical cancer by interacting with the transcription suppressor FOXP1. Eur J Pharmacol 856:172399. https://doi.org/10.1016/j.ejphar.2019.05.028

    Article  CAS  PubMed  Google Scholar 

  140. Song Y, Guo Q, Gao S, Hua K (2019) miR-454-3p promotes proliferation and induces apoptosis in human cervical cancer cells by targeting TRIM3. Biochem Biophys Res Commun 516:872–879. https://doi.org/10.1016/j.bbrc.2019.06.126

    Article  CAS  PubMed  Google Scholar 

  141. Guo Y, Tao M, Jiang M (2018) MicroRNA-454-3p inhibits cervical cancer cell invasion and migration by targeting c-Met. Exp Ther Med 15:2301–2306. https://doi.org/10.3892/etm.2018.5714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Hu Y, Wu F, Liu Y et al (2019) DNMT1 recruited by EZH2-mediated silencing of miR-484 contributes to the malignancy of cervical cancer cells through MMP14 and HNF1A. Clin Epigenet 11:186. https://doi.org/10.1186/s13148-019-0786-y

    Article  CAS  Google Scholar 

  143. Chen Y, Du J, Wang Y et al (2019) MicroRNA-497-5p induces cell cycle arrest of cervical cancer cells in S phase by targeting CBX4. Onco Targets Ther 12:10535–10545. https://doi.org/10.2147/OTT.S210059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Kapora E, Feng S, Liu W et al (2019) MicroRNA-505-5p functions as a tumor suppressor by targeting cyclin-dependent kinase 5 in cervical cancer. Biosci Rep 39:BSR20191221. https://doi.org/10.1042/BSR20191221

    Article  PubMed  PubMed Central  Google Scholar 

  145. Chen Q, Zeng X, Huang D, Qiu X (2018) Identification of differentially expressed miRNAs in early-stage cervical cancer with lymph node metastasis across The Cancer Genome Atlas datasets. Cancer Manage Res 10:6489–6504. https://doi.org/10.2147/CMAR.S183488

    Article  CAS  Google Scholar 

  146. Meng F, Ou J, Liu J et al (2019) MicroRNA-877 is downregulated in cervical cancer and directly targets MACC1 to inhibit cell proliferation and invasion. Exp Ther Med 18:3650–3658. https://doi.org/10.3892/etm.2019.7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yang Y, Xie YJ, Xu Q et al (2015) Down-regulation of miR-1246 in cervical cancer tissues and its clinical significance. Gynecol Oncol 138:683–688. https://doi.org/10.1016/j.ygyno.2015.06.015

    Article  CAS  PubMed  Google Scholar 

  148. Xu J, Wan X, Chen X et al (2016) miR-2861 acts as a tumor suppressor via targeting EGFR/AKT2/CCND1 pathway in cervical cancer induced by human papillomavirus virus 16 E6. Sci Rep 6:28968. https://doi.org/10.1038/srep28968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Poudyal D, Herman A, Adelsberger JW et al (2018) A novel microRNA, hsa-miR-6852 differentially regulated by Interleukin-27 induces necrosis in cervical cancer cells by downregulating the FoxM1 expression. Sci Rep 8:900. https://doi.org/10.1038/s41598-018-19259-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Guo M, Zhao X, Yuan X et al (2017) MiR-let-7 a inhibits cell proliferation, migration, and invasion by down-regulating PKM2 in cervical cancer. Oncotarget 8:28226–28236. https://doi.org/10.18632/oncotarget.15999

    Article  PubMed  PubMed Central  Google Scholar 

  151. Krakhmal NV, Zavyalova MV, Denisov EV et al (2015) Cancer invasion: patterns and mechanisms. Acta Nat 7:17–28

    Article  CAS  Google Scholar 

  152. Wang JY, Chen LJ (2019) The role of miRNAs in the invasion and metastasis of cervical cancer. Biosci Rep 39:BSR20181377. https://doi.org/10.1042/BSR20181377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Zhang P, Sun Y, Ma L (2015) ZEB1: at the crossroads of epithelial-mesenchymal transition, metastasis and therapy resistance. Cell Cycle 14:481–487. https://doi.org/10.1080/15384101.2015.1006048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Park S, Eom K, Kim J et al (2017) MiR-9, miR-21, and miR-155 as potential biomarkers for HPV positive and negative cervical cancer. BMC Cancer 17:658. https://doi.org/10.1186/s12885-017-3642-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Wei WF, Zhou CF, Wu XG et al (2017) MicroRNA-221-3p, a TWIST2 target, promotes cervical cancer metastasis by directly targeting THBS2. Cell Death Dis 8:3220. https://doi.org/10.1038/s41419-017-0077-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Tang Y, Zhao Y, Ran J, Wang Y (2020) MicroRNA-21 promotes cell metastasis in cervical cancer through modulating epithelial-mesenchymal transition. Oncol Lett 19:3289–3295. https://doi.org/10.3892/ol.2020.11438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Vogelstein B, Lane D, Levine AJ (2000) Surfing the p53 network. Nature 408:307–310. https://doi.org/10.1038/35042675

    Article  CAS  PubMed  Google Scholar 

  158. Vousden KH, Lu X (2002) Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604. https://doi.org/10.1038/nrc864

    Article  CAS  PubMed  Google Scholar 

  159. Wang S, Gao B, Yang H et al (2019) MicroRNA-432 is downregulated in cervical cancer and directly targets FN1 to inhibit cell proliferation and invasion. Oncol Lett 18:1475–1482. https://doi.org/10.3892/ol.2019.10403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Guo L, Lu W, Zhang X (2014) Metastasis-associated colon cancer-1 is a novel prognostic marker for cervical cancer. Int J Clin Exp Pathol 7:4150–4155

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Maloy S, Hughes K (eds) (2013) Brenner’s encyclopedia of genetics. Academic Press, Cambridege, pp 130–132

    Google Scholar 

  162. Thomas KA (ed) (2016) Angiogenesis. Encyclopedia of cell biology. Elsevier, Alpharetta, pp 102–116

    Google Scholar 

  163. Liang H, Zhang C, Guan H et al (2019) LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. J Cell Physiol 234:7266–7278. https://doi.org/10.1002/jcp.27484

    Article  CAS  PubMed  Google Scholar 

  164. Fan MJ, Zou YH, He PJ et al (2019) Long non-coding RNA SPRY4-IT1 promotes epithelial-mesenchymal transition of cervical cancer by regulating the miR-101-3p/ZEB1 axis. Biosci Rep 39(6):BSR20181339. https://doi.org/10.1042/BSR20181339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Jiang H, Liang M, Jiang Y et al (2019) The lncRNA TDRG1 promotes cell proliferation, migration and invasion by targeting miR-326 to regulate MAPK1 expression in cervical cancer. Cancer Cell Int 19:152. https://doi.org/10.1186/s12935-019-0872-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Rui X, Xu Y, Huang Y et al (2018) lncRNA DLG1-AS1 promotes cell proliferation by competitively binding with miR-107 and up-regulating ZHX1 expression in cervical cancer. Cell Physiol Biochem 49:1792–1803. https://doi.org/10.1159/000493625

    Article  CAS  PubMed  Google Scholar 

  167. Liu M, Jia J, Wang X et al (2018) Long non-coding RNA HOTAIR promotes cervical cancer progression through regulating BCL2 via targeting miR-143-3p. Cancer Biol Ther 19:391–399. https://doi.org/10.1080/15384047.2018.1423921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Johnson CA, James D, Marzan A, Armaos M (2019) Cervical cancer: an overview of pathophysiology and management. Semin Oncol Nurs 35:166–174. https://doi.org/10.1016/j.soncn.2019.02.003

    Article  PubMed  Google Scholar 

  169. Wang R, Pan W, Jin L et al (2020) Human papillomavirus vaccine against cervical cancer: opportunity and challenge. Cancer Lett 471:88–102. https://doi.org/10.1016/j.canlet.2019.11.039

    Article  CAS  PubMed  Google Scholar 

  170. Zhu H, Luo H, Zhang W et al (2016) Molecular mechanisms of cisplatin resistance in cervical cancer. Drug Des Devel Ther 10:1885–1895. https://doi.org/10.2147/DDDT.S106412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Parness J, Horwitz SB (1981) Taxol binds to polymerized tubulin in vitro. J Cell Biol 91:479–487. https://doi.org/10.1083/jcb.91.2.479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Chen M, Ai G, Zhou J et al (2019) circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. Biomed Pharmacother 117:109064. https://doi.org/10.1016/j.biopha.2019.109064

    Article  CAS  PubMed  Google Scholar 

  173. Chen Y, Song Y, Mi Y et al (2020) microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. Apoptosis 25:205–216. https://doi.org/10.1007/s10495-019-01588-y

    Article  CAS  PubMed  Google Scholar 

  174. Chen Y, Ke G, Han D et al (2014) MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. Exp Cell Res 320:12–20. https://doi.org/10.1016/j.yexcr.2013.10.014

    Article  CAS  PubMed  Google Scholar 

  175. Feng C, Ma F, Hu C et al (2018) SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell. Cell Cycle 17:448–458. https://doi.org/10.1080/15384101.2017.1395533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Guo J, Chen M, Ai G (2019) Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomed Pharmacother 115:108957. https://doi.org/10.1016/j.biopha.2019.108957

    Article  CAS  PubMed  Google Scholar 

  177. Chi C, Mao M, Shen Z et al (2018) HOXD-AS1 exerts oncogenic functions and promotes chemoresistance in cisplatin-resistant cervical cancer cells. Hum Gene Ther 29:1438–1448. https://doi.org/10.1089/hum.2017.256

    Article  CAS  PubMed  Google Scholar 

  178. Dong R, Qiu H, Du G et al (2014) Restoration of microRNA-218 increases cellular chemosensitivity to cervical cancer by inhibiting cell-cycle progression. Mol Med Rep 10:3289–3295. https://doi.org/10.3892/mmr.2014.2622

    Article  CAS  PubMed  Google Scholar 

  179. Li J, Ping Z, Ning H (2012) MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. Int J Mol Sci 13:16053–16064. https://doi.org/10.3390/ijms131216053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Yu M, Xu B, Yang H et al (2019) MicroRNA-218 regulates the chemo-sensitivity of cervical cancer cells through targeting survivin. Cancer Manag Res 11:6511–6519. https://doi.org/10.2147/CMAR.S199659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Du G, Cao D, Meng L (2017) miR-21 inhibitor suppresses cell proliferation and colony formation through regulating the PTEN/AKT pathway and improves paclitaxel sensitivity in cervical cancer cells. Mol Med Rep 15:2713–2719. https://doi.org/10.3892/mmr.2017.6340

    Article  CAS  PubMed  Google Scholar 

  182. Liu Q, Liu S, Wang D (2020) Overexpression of microRNA-21 decreased the sensitivity of advanced cervical cancer to chemoradiotherapy through SMAD7. Anticancer Drugs 31:272–281. https://doi.org/10.1097/CAD.0000000000000871

    Article  CAS  PubMed  Google Scholar 

  183. Shi F, Su J, Liu Z et al (2019) miR-144 reverses cisplatin resistance in cervical cancer via targeting LHX2. J Cell Biochem 120:15018–15026. https://doi.org/10.1002/jcb.28763

    Article  CAS  PubMed  Google Scholar 

  184. Song J, Li Y (2017) miR-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. Cancer Sci 108:23–31. https://doi.org/10.1111/cas.13104

    Article  CAS  PubMed  Google Scholar 

  185. Xiong Y, Sun F, Dong P et al (2017) iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling. J Exp Clin Cancer Res 36:48. https://doi.org/10.1186/s13046-017-0520-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Lei C, Wang Y, Huang Y (2012) Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemo-sensitivity to cisplatin in human Caski cervical cancer cells. PLoS ONE 7:e52310. https://doi.org/10.1371/journal.pone.0052310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Wen SY, Lin Y, Yu YQ et al (2015) miR-506 acts as a tumor suppressor by directly targeting the hedgehog pathway transcription factor Gli3 in human cervical cancer. Oncogene 34:717–725. https://doi.org/10.1038/onc.2014.9

    Article  CAS  PubMed  Google Scholar 

  188. Shen Y, Zhou J, Li Y et al (2014) miR-375 mediated acquired chemo-resistance in cervical cancer by facilitating EMT. PLoS ONE 9:e109299. https://doi.org/10.1371/journal.pone.0109299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Feng Y, Zou W, Hu C et al (2017) Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Arch Biochem Biophys 623–624:20–30. https://doi.org/10.1016/j.abb.2017.05.001

    Article  CAS  PubMed  Google Scholar 

  190. Zou X, Zhu C, Zhang L et al (2020) MicroRNA-708 suppresses cell proliferation and enhances chemosensitivity of cervical cancer cells to cDDP by negatively targeting timeless. Onco Targets Ther 13:225–235. https://doi.org/10.2147/OTT.S227015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao Z, Ji M, Wang Q et al (2020) miR-16-5p/PDK4-mediated metabolic reprogramming is involved in chemoresistance of cervical cancer. Mol Ther Oncolytics 17:509–517. https://doi.org/10.1016/j.omto.2020.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Pardini B, De Maria D, Francavilla A et al (2018) MicroRNAs as markers of progression in cervical cancer: a systematic review. BMC Cancer 18:696. https://doi.org/10.1186/s12885-018-4590-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Liu SS, Chan KKL, Chu DKH et al (2018) Oncogenic microRNA signature for early diagnosis of cervical intraepithelial neoplasia and cancer. Mol Oncol 12:2009–2022. https://doi.org/10.1002/1878-0261.12383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Farzanehpour M, Mozhgani SH, Jalilvand S et al (2019) Serum and tissue miRNAs: potential biomarkers for the diagnosis of cervical cancer. Virol J 16:116. https://doi.org/10.1186/s12985-019-1220-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kawai S, Fujii T, Kukimoto I et al (2018) Identification of miRNAs in cervical mucus as a novel diagnostic marker for cervical neoplasia. Sci Rep 8:7070. https://doi.org/10.1038/s41598-018-25310-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Faruq O, Vecchione A (2015) microRNA: diagnostic perspective. Front Med (Lausanne) 2:51. https://doi.org/10.3389/fmed.2015.00051

    Article  Google Scholar 

  197. Wang H, Peng R, Wang J et al (2018) Circulating microRNAs as potential cancer biomarkers: the advantage and disadvantage. Clin Epigenet 10:59. https://doi.org/10.1186/s13148-018-0492-1

    Article  CAS  Google Scholar 

  198. Chatterjee N, Rana S, Espinosa-Diez C, Anand S (2017) MicroRNAs in Cancer: challenges and opportunities in early detection, disease monitoring, and therapeutic agents. Curr Pathobiol Rep 5:35–42. https://doi.org/10.1007/s40139-017-0123-0

    Article  PubMed  PubMed Central  Google Scholar 

  199. van Rooij E, Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6:851–864. https://doi.org/10.15252/emmm.201100899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Shah MY, Ferrajoli A, Sood AK et al (2016) microRNA therapeutics in cancer—an emerging concept. EBioMedicine 12:34–42. https://doi.org/10.1016/j.ebiom.2016.09.017

    Article  PubMed  PubMed Central  Google Scholar 

  201. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research. Front Genet 10:478. https://doi.org/10.3389/fgene.2019.00478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Song R, Cong L, Ni G et al (2017) MicroRNA-195 inhibits the behavior of cervical cancer tumors by directly targeting HDGF. Oncol Lett 14:767–775. https://doi.org/10.3892/ol.2017.6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Tan D, Zhou C, Han S et al (2018) MicroRNA-378 enhances migration and invasion in cervical cancer by directly targeting autophagy-related protein 12. Mol Med Rep 17:6319–6326. https://doi.org/10.3892/mmr.2018.8645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Liang H, Luo R, Chen X et al (2017) miR-187 inhibits the growth of cervical cancer cells by targeting FGF9. Oncol Rep 38:1977–1984. https://doi.org/10.3892/or.2017.5916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hasanzadeh M, Movahedi M, Rejali M et al (2019) The potential prognostic and therapeutic application of tissue and circulating microRNAs in cervical cancer. J Cell Physiol 234:1289–1294. https://doi.org/10.1002/jcp.27160

    Article  CAS  PubMed  Google Scholar 

  206. Ling H, Girnita L, Buda O, Calin GA (2017) Non-coding RNAs: the cancer genome dark matter that matters! Clin Chem Lab Med 55:705–714. https://doi.org/10.1515/cclm-2016-0740

    Article  CAS  PubMed  Google Scholar 

  207. Seto AG, Beatty X, Lynch JM et al (2018) Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br J Haematol 183:428–444. https://doi.org/10.1111/bjh.15547

    Article  CAS  PubMed  Google Scholar 

  208. Reid G, Pel ME, Kirschner MB et al (2013) Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann Oncol 24:3128–3135. https://doi.org/10.1093/annonc/mdt412

    Article  CAS  PubMed  Google Scholar 

  209. Herrera-Carrillo E, Liu YP, Berkhout B (2017) Improving miRNA delivery by optimizing mirna expression cassettes in diverse virus vectors. Hum Gene Ther Methods 28:177–190. https://doi.org/10.1089/hgtb.2017.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Adli M (2018) The CRISPR tool kit for genome editing and beyond. Nat Commun 9:1911. https://doi.org/10.1038/s41467-018-04252-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Chen M, Mao A, Xu M et al (2019) CRISPR-Cas9 for cancer therapy: opportunities and challenges. Cancer Lett 447:48–55. https://doi.org/10.1016/j.canlet.2019.01.017

    Article  CAS  PubMed  Google Scholar 

  212. Simonson B, Das S (2015) MicroRNA therapeutics: the next magic bullet? Mini Rev Med Chem 15:467–474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Naidu S, Magee P, Garofalo M (2015) MiRNA-based therapeutic intervention of cancer. J Hematol Oncol 8:68. https://doi.org/10.1186/s13045-015-0162-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Biscans A, Coles A, Haraszti R et al (2019) Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res 47:1082–1096. https://doi.org/10.1093/nar/gky1239

    Article  CAS  PubMed  Google Scholar 

  215. Esposito CL, Cerchia L, Catuogno S et al (2014) Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 22:1151–1163. https://doi.org/10.1038/mt.2014.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Suter SR, Ball-Jones A, Mumbleau MM et al (2017) Controlling miRNA-like off-target effects of an siRNA with nucleobase modifications. Org Biomol Chem 15:10029–10036. https://doi.org/10.1039/c7ob02654d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lai X, Eberhardt M, Schmitz U, Vera J (2019) Systems biology-based investigation of cooperating microRNAs as monotherapy or adjuvant therapy in cancer. Nucleic Acids Res 47:7753–7766. https://doi.org/10.1093/nar/gkz638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Stepanov G, Zhuravlev E, Shender V et al (2018) Nucleotide modifications decrease innate immune response induced by synthetic analogs of snRNAs and snoRNAs. Genes (Basel) 9:531. https://doi.org/10.3390/genes9110531

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Associateship Fellowship to TM from the Department of Biotechnology (DBT), Government of India.

Funding

This work was supported by the Research Associateship Fellowship to TM from the Department of Biotechnology (DBT), Government of India.

Author information

Authors and Affiliations

Authors

Contributions

TM: Conceptualization, Methodology, Investigation, Validation, Visualization, Writing—original draft, Writing—Review & Editing, Funding acquisition; SE: Conceptualization, Visualization, Project administration, Supervision, Writing—Review & Editing, Funding acquisition.

Corresponding author

Correspondence to Selvakumar Elangovan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All the authors have approved the submission and publication of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitra, T., Elangovan, S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 476, 4363–4385 (2021). https://doi.org/10.1007/s11010-021-04249-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04249-4

Keywords

Navigation