Skip to main content

Advertisement

Log in

Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The collapse of mining tailing dams in Brumadinho, Minas Gerais, Brazil, that occurred in 2019 was one of the worst environmental and social disasters witnessed in the country. In this sense, monitoring any impacted areas both before and after the disaster is crucial to understand the actual scenario and problems of disaster management and environmental impact assessment. In order to find answers to that problem, the aim of this study was to identify and analyze the spatiality of the impacted area by rupture of the tailing dam of the Córrego do Feijão mine in Brumadinho, Minas Gerais, by using orbital remote sensing. Land use and land occupation, phytoplankton chlorophyll-a, water turbidity, total suspended solids on water, and carbon sequestration efficiency by vegetation (CO2Flux) were estimated by orbital imagery from the Landsat-8/OLI and MSI/Sentinel-2 sensors in order to assess the environmental impacts generated by the disaster. Data were extracted from spectral models in which the variables that best demonstrated the land use variation over the years were sought. Mean comparison by t-test was performed to compare the time series analyzed, that is, before and after the disaster. Through the analysis of water quality, it was observed that the environmental impact was calamitous to natural resources, especially water from Córrego do Feijão.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Agency, E. E. S. (2013). Sentinel-2 user handbook. ESA.

  • Aguiar, R. G. (2005). Mass and energy flows in a tropical forest in southwestern Amazonia. Universidade Federal de Mato Grosso.

  • Almeida, J. R. R., & Rocha, K. S. (2018). Application of NDVI, PRI and CO2Flux vegetation indices in the characterization of vegetative cover in the environmental protection area Raimundo Irineu Serra. In Anais do XII Simpósio de Geotecnologias no Pantanal.

  • Angelini, R., Bini, L. M., & Starling, F. L. R. M. (2008). Efeitos de diferentes intervenções no processo de eutrofização do Lago Paranoá (Brasília-DF). Oecologia Brasiliensis, 12(03), 564–571. https://doi.org/10.4257/oeco.2008.1203.15

    Article  Google Scholar 

  • Aparecida, L., Tonon, C., Pieretti, G. G., Seloin, V. J., Moura, M. M., & Regina, M. (2013). Análise de parâmetros de qualidade da água para consumo humano. Revista Tecnológica, 22(1), 35–41. https://doi.org/10.4025/revtecnol.v22i1.12578

    Article  Google Scholar 

  • Ban, Y., Marullo, S., & Eklundh, L. (2017). European remote sensing: Progress, challenges, and opportunities. International Journal of Remote Sensing, 38(7), 1759–1764. https://doi.org/10.1080/01431161.2017.1291484

    Article  Google Scholar 

  • Baptista, G. M. M. (2003). Validation of carbon sequestration modeling for tropical Cerrado environments, using AVIRIS and HYPERION data. In XI SBSR (pp. 1037–1044).

  • Bastos, R. B., Feitosa, F. A. D. N., & Muniz, K. (2005). Variabilidade espaço-temporal da biomassa fitoplanctônica e hidrologia no estuário do rio Una (Pernambuco - Brasil). Tropical Oceanography, 33(1). https://doi.org/10.5914/tropocean.v33i1.5066

  • Behling, R., Roessner, S., Kaufmann, H., & Kleinschmit, B. (2014). Automated spatiotemporal landslide mapping over large areas using RapidEye time series data. Remote Sensing, 6(9), 8026–8055. https://doi.org/10.3390/rs6098026

    Article  Google Scholar 

  • Bilotta, G. S., & Brazier, R. E. (2008). Understanding the influence of suspended solids on water quality and aquatic biota. Water Research, 42(12), 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018

    Article  CAS  Google Scholar 

  • Brancalion, P. H. S., de Almeida, D. R. A., Vidal, E., Molin, P. G., Sontag, V. E., Souza, S. E. X. F., & Schulze, M. D. (2018). Fake legal logging in the Brazilian Amazon. Science Advances, 4(8), eaat1192. https://doi.org/10.1126/sciadv.aat1192

  • Brezonik, P., Menken, K. D., & Bauer, M. (2005). Landsat-based remote sensing of lake water quality characteristics, including chlorophyll and colored dissolved organic matter ({CDOM}). Lake and Reservoir Management, 21(4), 373–382. https://doi.org/10.1080/07438140509354442

    Article  Google Scholar 

  • Butenuth, M., Frey, D., Nielsen, A. A., & Skriver, H. (2011). Infrastructure assessment for disaster management using multi-sensor and multi-temporal remote sensing imagery. International Journal of Remote Sensing, 32(23), 8575–8594. https://doi.org/10.1080/01431161.2010.542204

    Article  Google Scholar 

  • Caballero, I., Stumpf, R., & Meredith, A. (2019). Preliminary assessment of turbidity and chlorophyll impact on bathymetry derived from Sentinel-2A and Sentinel-3A satellites in South Florida. Remote Sensing, 11(6), 645. https://doi.org/10.3390/rs11060645

    Article  Google Scholar 

  • Calazans, G. M., Pinto, C. C., da Costa, E. P., Perini, A. F., & Oliveira, S. C. (2018). The use of multivariate statistical methods for optimization of the surface water quality network monitoring in the Paraopeba river basin, Brazil. Environmental Monitoring and Assessment, 190(8). https://doi.org/10.1007/s10661-018-6873-2

  • CETESB, C. de T. de S. A. do E. de S. P. (2009). Environmental and health significance of water and sediment quality variables and analytical and sampling methodologies. São Paulo.

  • Chander, G., Markham, B. L., & Helder, D. L. (2009). Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment, 113(5), 893–903. https://doi.org/10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Chella, M. R., Sá, J. F., Mine, M. R. M., Fill, H. D., & Ferreira, T. N. (2005). Alto Iguaçu monitoring network: Instrument for defining progressive goals for framing. In Anais do XVI Simpósio Brasileiro de Recursos Hídricos.

  • Chen, L., Tan, C.-H., Kao, S. J., & Wang, T. S. (2008). Improvement of remote monitoring on water quality in a subtropical reservoir by incorporating grammatical evolution with parallel genetic algorithms into satellite imagery. Water Research, 42(1–2), 296–306. https://doi.org/10.1016/j.watres.2007.07.014.

    Article  CAS  Google Scholar 

  • Coelho, R. P. (2004). Phosphorus contribution and the presence of Cyanobacteria in the São Simão Reservoir.

  • CPRM. (1996). Hydrometeorological network and physical characterization of the upper São Francisco basin. Belo Horizonte: CPRM.

  • Cunha-Santino, M. B. Da, & Buzelli, G. M. (2013). Diagnosis and analysis of water quality and trophic state of Barra Bonita reservoir, {SP}. Ambiente e Agua - An Interdisciplinary Journal of Applied Science, 8(1). https://doi.org/10.4136/ambi-agua.930

  • Cunha, D. G. F., & do Carmo Calijuri, M., Lamparelli, M. C., & Jr., N. M. . (2013). Resolução CONAMA 357/2005: Análise espacial e temporal de não conformidades em rios e reservatórios do estado de São Paulo de acordo com seus enquadramentos (2005–2009). Engenharia Sanitaria e Ambiental, 18(2), 159–168. https://doi.org/10.1590/s1413-41522013000200008

    Article  Google Scholar 

  • da Silva Junior, C. A., Coutinho, A. D., de Oliveira-Júnior, J. F., Teodoro, P. E., Lima, M., Shakir, M., et al. (2018). Analysis of the impact on vegetation caused by abrupt deforestation via orbital sensor in the environmental disaster of Mariana, Brazil. Land Use Policy, 76, 10–20. https://doi.org/10.1016/j.landusepol.2018.04.019

    Article  Google Scholar 

  • da Silva Junior, C. A., de Medeiros Costa, G., Rossi, F. S., do Vale, J. C. E., de Lima, R. B., Lima, M., , et al. (2019). Remote sensing for updating the boundaries between the brazilian Cerrado-Amazonia biomes. Environmental Science & Policy, 101, 383–392. https://doi.org/10.1016/j.envsci.2019.04.006

    Article  Google Scholar 

  • De Castro, P. H. M., de Freitas Pereira, A. C., & Barros, M. V. F. (2018). Modelos Empíricos para Inferência de Componentes Opticamente Ativos em Ambientes Lóticos e Semilênticos do Rio Tibagi/PR, Aplicados À Imagens Landsat-8/OLI. Raega - O Espaço Geográfico Em Análise, 43, 75. https://doi.org/10.5380/raega.v43i0.50545

    Article  Google Scholar 

  • Dezordi, R., Kramer, G., Rosa, C. N., Osto, J. V. D., & Filho, W. P. (2019). Superficial turbidity analysis from Landsat-8 (OLI sensor) images in an aquatic compartment of the Itaipu-PR reservoir, Brazil. In Anais do XIX Simpósio Brasileiro de Sensoriamento Remoto.

  • Esteves, F. A. (1998). Limnology Basics (2nd ed.). Interciência.

    Google Scholar 

  • EXELIS. (2014). Fast line-of-sight atmospheric analysis of hypercubes (FLAASH).

  • Fassoni-Andrade, A. C., Zanotta, D. C., Guasselli, L. A., & de Andrade, A. M. (2017). Linear Spectral Mixing Model for estimating optically active components in estuarine waters of Patos Lagoon, Brazil. International Journal of Remote Sensing, 38(17), 4767–4781. https://doi.org/10.1080/01431161.2017.1323281

  • FEAM. (2010). Soil map of the State of Minas Gerais. Belo Horizonte.

  • Foesch, M. D. S. (2017). Physico-chemical characteristics and spectral behavior of water contaminated by mining waste: The case of Mariana. Universidade Federal Rural do Rio de Janeiro.

    Google Scholar 

  • Friese, M., Migdall, S., Bach, H., Krätz, D., Borchardt, D., Hank, T., & Mauser, W. (2010). Water quality assessment using hyperspectral techniques for the river main and its riparian water. In Hyperspectral 2010 Workshop (pp. 17–19). Frascati, Italy.

  • Gamon, J. A., Serrano, L., & Surfus, J. S. (1997). The photochemical reflectance index: An optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia, 112(4), 492–501. https://doi.org/10.1007/s004420050337

    Article  CAS  Google Scholar 

  • Gatti, L. V., Gloor, M., Miller, J. B., Doughty, C. E., Malhi, Y., Domingues, L. G., et al. (2014). Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 506(7486), 76–80. https://doi.org/10.1038/nature12957

    Article  CAS  Google Scholar 

  • Gillespie, T. W., Chu, J., Frankenberg, E., & Thomas, D. (2007). Assessment and prediction of natural hazards from satellite imagery. Progress in Physical Geography: Earth and Environment, 31(5), 459–470. https://doi.org/10.1177/0309133307083296

    Article  Google Scholar 

  • Goodin, D. G., Luoheng Han, H., Fraser, R. N., Rundquist, D. C., Stebbins, W. A., & Schalles, J. F. (1993). Analysis of suspended solids in water using remotely sensed high resolution derivative spectra. Photogrammetric Engineering & Remote Sensing, 59(4), 505–510.

    Google Scholar 

  • Joyce, K. E., Samsonov, S., Manville, V., Jongens, R., Graettinger, A., & Cronin, S. J. (2009). Remote sensing data types and techniques for lahar path detection: A case study at Mt Ruapehu, New Zealand. Remote Sensing of Environment, 113(8), 1778–1786. https://doi.org/10.1016/j.rse.2009.04.001

    Article  Google Scholar 

  • Kruse, F. (2004). Comparison of ATREM, ACORN, and FLAASH atmospheric corrections using low-altitude AVIRIS data of Boulder, CO. In Summaries of 13th JPL Airborne Geoscience Workshop.

  • Leal, L. S. M. (2000). Seasonal variation in the flow and concentration of CO2 in the eastern region of the Amazon Rainforest - PA. Universidade Federal de Viçosa.

  • Li, L., Sengpiel, R. E., Pascual, D. L., Tedesco, L. P., Wilson, J. S., & Soyeux, E. (2010). Using hyperspectral remote sensing to estimate chlorophyll-a and phycocyanin in a mesotrophic reservoir. International Journal of Remote Sensing, 31(15), 4147–4162. https://doi.org/10.1080/01431161003789549

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (2007). Remote sensing and image interpretation. (Wiley, Ed.) (6th ed.). New York.

  • Olivetti, D., Roig, H., Martinez, J.-M., Borges, H., Ferreira, A., Casari, R., et al. (2020). Low-cost unmanned aerial multispectral imagery for siltation monitoring in reservoirs. Remote Sensing, 12(11), 1855. https://doi.org/10.3390/rs12111855

    Article  Google Scholar 

  • Polonio, V. D. (2015). Vegetation indices in the measurement of carbon stocks in areas with sugarcane. Universidade Estadual Paulista Júlio de Mesquita Filho.

  • Pontedeiro, E. M., Heilbron, P. F. L., & Cotta, R. M. (2007). Assessment of the mineral industry NORM-TENORM disposal in hazardous landfills. Journal of Hazardous Materials, 139(3), 563–568. https://doi.org/10.1016/j.jhazmat.2006.02.063

    Article  CAS  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. Austria.

    Google Scholar 

  • Rahman, A. F., Gamon, J. A., Fuentes, D. A., Roberts, D. A., & Prentiss, D. (2001). Modeling spatially distributed ecosystem flux of boreal forest using hyperspectral indices from AVIRIS imagery. Journal of Geophysical Research: Atmospheres, 106(D24), 33579–33591. https://doi.org/10.1029/2001jd900157

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. In Proceeding of ERTS‐1 Symposium (pp. 309–317).

  • Sausen, T. M., & Pereira, M. D. B. (1986). Study of reservoir water quality using remote sensing techniques: Methodological concepts. In Simpósio Latino-Americano de Sensoriamento Remoto (pp. 638–644).

  • Schaefer, C. E. (2013). Bases Físicas da Paisagem Brasileira: Estrutura Geológica, Relevo e Solos. In Tópicos em Ciência do Solo (p. 69).

  • Segura, F. R., Nunes, E. A., Paniz, F. P., Paulelli, A. C. C., Rodrigues, G. B., Braga, G. Ú. L., et al. (2016). Potential risks of the residue from Samarco{\textquotesingle}s mine dam burst (Bento Rodrigues, Brazil). Environmental Pollution, 218, 813–825. https://doi.org/10.1016/j.envpol.2016.08.005

    Article  CAS  Google Scholar 

  • Sheela, A. M., Letha, J., Joseph, S., Ramachandran, K. K., & P., S. S. . (2010). Trophic state index of a lake system using IRS (P6-LISS III) satellite imagery. Environmental Monitoring and Assessment, 177(1–4), 575–592. https://doi.org/10.1007/s10661-010-1658-2

    Article  Google Scholar 

  • Shimabukuro, Y. E., & Smith, J. A. (1991). The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Transactions on Geoscience and Remote Sensing, 29(1), 16–20. https://doi.org/10.1109/36.103288

    Article  Google Scholar 

  • Silva Júnior, R. S. S. (2003). Concentrations and flows of carbon dioxide (CO2) on pastures in the Amazon region. Universidade Federal de Alagoas.

  • Souza Junior, C. M., Siqueira, J., Sales, M., Fonseca, A., Ribeiro, J., Numata, I., et al. (2013). Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sensing, 5(11), 5493–5513. https://doi.org/10.3390/rs5115493.

    Article  Google Scholar 

  • Souza, C. M., Roberts, D. A., & Cochrane, M. A. (2005). Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sensing of Environment, 98(2–3), 329–343. https://doi.org/10.1016/j.rse.2005.07.013

    Article  Google Scholar 

  • Souza Junior, C. M., Roberts, D. A., & Cochrane, M. A. (2005). Combining spectral and spatial information to map canopy damage from selective logging and forest fires. Remote Sensing of Environment, 98(2–3), 329–343. https://doi.org/10.1016/j.rse.2005.07.013

    Article  Google Scholar 

  • Tarolli, P., & Sofia, G. (2016). Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology, 255, 140–161. https://doi.org/10.1016/j.geomorph.2015.12.007

    Article  Google Scholar 

  • Tebbs, E. J., Remedios, J. J., & Harper, D. M. (2013). Remote sensing of chlorophyll-a as a measure of cyanobacterial biomass in Lake Bogoria, a hypertrophic, saline{\textendash}alkaline, flamingo lake, using Landsat {ETM}$\mathplus$. Remote Sensing of Environment, 135, 92–106. https://doi.org/10.1016/j.rse.2013.03.024

  • Thompson, F., de Oliveira, B. C., Cordeiro, M. C., Masi, B. P., Rangel, T. P., Paz, P., et al. (2020). Severe impacts of the Brumadinho dam failure (Minas Gerais, Brazil) on the water quality of the Paraopeba River. Science of the Total Environment, 705, 135914. https://doi.org/10.1016/j.scitotenv.2019.135914

    Article  CAS  Google Scholar 

  • Tralli, D. M., Blom, R. G., Zlotnicki, V., Donnellan, A., & Evans, D. L. (2005). Satellite remote sensing of earthquake, volcano, flood, landslide and coastal inundation hazards. ISPRS Journal of Photogrammetry and Remote Sensing, 59(4), 185–198. https://doi.org/10.1016/j.isprsjprs.2005.02.002

    Article  Google Scholar 

  • Trindade, A. L. C. (2013). Application of statistical techniques for assessing surface water quality monitoring data from the São Francisco River Basin mining portion. Universidade Federal de Minas Gerais.

  • Tundisi, J. G. (1970). O plâncton estuarino. Contribuições avulsas do Instituto Oceanográfico da Universidade de São Paulo (Série Ocea.). São Paulo.

  • Tundisi, J. G., & Tundisi, T. M. (2008). Limnologia. (O. de Textos, Ed.).

  • Ventura, D. L. T. (2013). Use of remote sensing to monitor chlorophyll a concentration in semiarid weirs. Universidade de Brasília.

  • Vinçon-Leite, B., & Casenave, C. (2019). Modelling eutrophication in lake ecosystems: A review. Science of the Total Environment, 651, 2985–3001. https://doi.org/10.1016/j.scitotenv.2018.09.320

    Article  CAS  Google Scholar 

  • Von Sperling, M. (2007). Principles of biological wastewater treatment. (DESA-UFMG, Ed.). Belo Horizonte.

Download references

Acknowledgements

This research was carried out with the support of the Coordination for the Improvement of Higher Education Personnel—Brazil (CAPES)—Financing Code 001. I would also like to thank the Professional Program in National Network on Water Resources Management and Regulation—ProfÁgua, CAPES/ANA Project AUXPE Nº. 2717/2015, for the scientific technical support provided to date.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Antonio da Silva Junior.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, A.P.D., Teodoro, P.E., Teodoro, L.P.R. et al. Application of remote sensing in environmental impact assessment: a case study of dam rupture in Brumadinho, Minas Gerais, Brazil. Environ Monit Assess 193, 606 (2021). https://doi.org/10.1007/s10661-021-09417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09417-z

Keywords

Navigation