Skip to main content

Advertisement

Log in

Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered?

  • Commentary
  • Published:
GeroScience Aims and scope Submit manuscript

Abstract

Alzheimer’s disease and Alzheimer’s disease–related dementias (AD/ADRD) are associated with cerebral hypoperfusion or reductions in baseline cerebral blood flow (CBF). The neurovascular coupling (NVC) response or functional hyperemia regulates brain perfusion via a retrograde (capillary-to-arteriole) pathway by increasing regional CBF in response to local neuron activation. The hippocampus plays a significant role in spatial and non-spatial memory. Functional MRI (fMRI) has not established a solid positive correlation between hippocampal blood oxygen level–dependent (BOLD) signal and local neuronal activity. The inconsistency of NVC in the hippocampus compared to the neocortex is possibly due to anatomical and methodological difficulties to accurately detect hippocampal blood flow. A recent study reported that NVC and oxygenation are reduced in the hippocampus compared to the cortex using a novel invasive surgical approach by creating a cranial window with and without removing the neocortex. Results from these studies suggest that the hippocampus is more susceptible to hypoxic injury in pathological conditions when NVC is impaired, such as AD/ADRD, stroke, and traumatic brain injury (TBI). The Rosetta Stone of regional variation in the NVC and its significance in AD/ADRD has not been fully deciphered based on these results without addressing remaining concerns; however, we are one step closer, indeed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bracko O, Cruz Hernández JC, Park L, Nishimura N, Schaffer CB. Causes and consequences of baseline cerebral blood flow reductions in Alzheimer’s disease. J Cereb Blood Flow Metab. 2021;41(7):1501–16. https://doi.org/10.1177/0271678X20982383.

  2. Fan F, Roman RJ. Reversal of cerebral hypoperfusion: a novel therapeutic target for the treatment of AD/ADRD? Geroscience. 2021;43(2):1065–7.

    Article  CAS  Google Scholar 

  3. Ungvari Z, Tarantini S, Donato AJ, Galvan V, Csiszar A. Mechanisms of vascular aging. Circ Res. 2018;123(7):849–67.

    Article  CAS  Google Scholar 

  4. Fan F, Booz GW, Roman RJ. Aging diabetes, deconstructing the cerebrovascular wall. Aging (Albany NY). 2021;13(7):9158–9.

    Article  Google Scholar 

  5. Mughal A, Harraz OF, Gonzales AL, Hill-Eubanks D, Nelson MT. PIP2 improves cerebral blood flow in a mouse model of Alzheimer’s disease. Function (Oxf). 2021;2(2):zqab010. https://doi.org/10.1093/function/zqab010.

  6. Grant RI, Hartmann DA, Underly RG, Berthiaume AA, Bhat NR, Shih AY. Organizational hierarchy and structural diversity of microvascular pericytes in adult mouse cortex. J Cereb Blood Flow Metab. 2019;39(3):411–25.

    Article  Google Scholar 

  7. Liu Y, Zhang H, Wu CY, Yu T, Fang X, Ryu JJ, Zheng B, Chen Z, Roman RJ, Fan F. 20-HETE-promoted cerebral blood flow autoregulation is associated with enhanced pericyte contractility. Prostaglandins Other Lipid Mediat. 2021;154:106548.

    Article  CAS  Google Scholar 

  8. Schaeffer S, Iadecola C. Revisiting the neurovascular unit. Nat Neurosci. 2021. https://doi.org/10.1038/s41593-021-00904-7.

  9. Csipo T, Lipecz A, Mukli P, Bahadli D, Abdulhussein O, Owens CD, Tarantini S, Hand RA, Yabluchanska V, Kellawan JM, Sorond F, James JA, Csiszar A, Ungvari ZI, Yabluchanskiy A. Increased cognitive workload evokes greater neurovascular coupling responses in healthy young adults. PLoS One. 2021;16(5):e0250043.

    Article  CAS  Google Scholar 

  10. Lipecz A, Csipo T, Tarantini S, Hand RA, Ngo BN, Conley S, Nemeth G, Tsorbatzoglou A, Courtney DL, Yabluchanska V, Csiszar A, Ungvari ZI, Yabluchanskiy A. Age-related impairment of neurovascular coupling responses: a dynamic vessel analysis (DVA)-based approach to measure decreased flicker light stimulus-induced retinal arteriolar dilation in healthy older adults. Geroscience. 2019;41(3):341–9.

    Article  CAS  Google Scholar 

  11. Deshmukh S, Knierim J. Representation of non-spatial and spatial information in the lateral entorhinal cortex. Front Behav Neurosci. 2011;5:69.

    Article  Google Scholar 

  12. Setti SE, Hunsberger HC, Reed MN. Alterations in hippocampal activity and Alzheimer’s disease. Transl Issues Psychol Sci. 2017;3(4):348–56.

    Article  Google Scholar 

  13. Zhang X, Yin X, Zhang J, Li A, Gong H, Luo Q, Zhang H, Gao Z, Jiang H. High-resolution mapping of brain vasculature and its impairment in the hippocampus of Alzheimer’s disease mice. Natl Sci Rev. 2019;6(6):1223–38.

    Article  Google Scholar 

  14. Toth P, Tarantini S, Csiszar A, Ungvari Z. Functional vascular contributions to cognitive impairment and dementia: mechanisms and consequences of cerebral autoregulatory dysfunction, endothelial impairment, and neurovascular uncoupling in aging. Am J Physiol Heart Circ Physiol. 2017;312(1):H1–20.

    Article  Google Scholar 

  15. Tarantini S, Tran CHT, Gordon GR, Ungvari Z, Csiszar A. Impaired neurovascular coupling in aging and Alzheimer’s disease: contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol. 2017;94:52–8.

    Article  CAS  Google Scholar 

  16. Wang S, Lv W, Zhang H, Liu Y, Li L, Jefferson JR, Guo Y, Li M, Gao W, Fang X, Paul IA, Rajkowska G, Shaffery JP, Mosley TH, Hu X, Liu R, Wang Y, Yu H, Roman RJ, Fan F. Aging exacerbates impairments of cerebral blood flow autoregulation and cognition in diabetic rats. Geroscience. 2020;42(5):1387–410.

    Article  Google Scholar 

  17. Tatu L, Vuillier F. Structure and vascularization of the human hippocampus. Front Neurol Neurosci. 2014;34:18–25.

    Article  Google Scholar 

  18. Rusinek H, Brys M, Glodzik L, Switalski R, Tsui WH, Haas F, McGorty K, Chen Q, de Leon MJ. Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T. Magn Reson Med. 2011;65(1):128–37.

    Article  Google Scholar 

  19. Kety SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27(4):476–83.

    Article  CAS  Google Scholar 

  20. Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol. 2021;320(2):H549-h562.

    Article  CAS  Google Scholar 

  21. Hartmann DA, Berthiaume AA, Grant RI, Harrill SA, Koski T, Tieu T, McDowell KP, Faino AV, Kelly AL, Shih AY. Brain capillary pericytes exert a substantial but slow influence on blood flow. Nat Neurosci. 2021;24(5):633–45. https://doi.org/10.1038/s41593-020-00793-2.

  22. Nyul-Toth A, Tarantini S, DelFavero J, Yan F, Balasubramanian P, Yabluchanskiy A, Ahire C, Kiss T, Csipo T, Lipecz A, Farkas AE, Wilhelm I, Krizbai IA, Tang Q, Csiszar A, Ungvari Z. Demonstration of age-related blood-brain barrier disruption and cerebromicrovascular rarefaction in mice by longitudinal intravital two-photon microscopy and optical coherence tomography. Am J Physiol Heart Circ Physiol. 2021;320(4):H1370–92.

    Article  CAS  Google Scholar 

  23. Csipo T, Mukli P, Lipecz A, Tarantini S, Bahadli D, Abdulhussein O, Owens C, Kiss T, Balasubramanian P, Nyul-Toth A, Hand RA, Yabluchanska V, Sorond FA, Csiszar A, Ungvari Z, Yabluchanskiy A. Assessment of age-related decline of neurovascular coupling responses by functional near-infrared spectroscopy (fNIRS) in humans. Geroscience. 2019;41(5):495–509.

    Article  Google Scholar 

  24. Shaw K, Bell L, Boyd K, Grijseels DM, Clarke D, Bonnar O, Crombag HS, Hall CN. Neurovascular coupling and oxygenation are decreased in hippocampus compared to neocortex because of microvascular differences. Nat Commun. 2021;12(1):3190.

    Article  CAS  Google Scholar 

  25. Johnson AC, Miller JE, Cipolla MJ. Memory impairment in spontaneously hypertensive rats is associated with hippocampal hypoperfusion and hippocampal vascular dysfunction. J Cereb Blood Flow Metab. 2020;40(4):845–59.

    Article  CAS  Google Scholar 

  26. Schridde U, Khubchandani M, Motelow JE, Sanganahalli BG, Hyder F, Blumenfeld H. Negative BOLD with large increases in neuronal activity. Cereb Cortex. 2008;18(8):1814–27.

    Article  Google Scholar 

  27. Ekstrom AD. Regional variation in neurovascular coupling and why we still lack a Rosetta Stone. Philos Trans R Soc Lond B Biol Sci. 2021;376(1815):20190634.

    Article  Google Scholar 

  28. Shih AY, Mateo C, Drew PJ, Tsai PS, Kleinfeld D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. 2012;(61):3742. https://doi.org/10.3791/3742.

  29. Wang S, Zhang H, Liu Y, Li L, Guo Y, Jiao F, Fang X, Jefferson JR, Li M, Gao W, Gonzalez-Fernandez E, Maranon RO, Pabbidi MR, Liu R, Alexander BT, Roman RJ, Fan F. Sex differences in the structure and function of rat middle cerebral arteries. Am J Physiol Heart Circ Physiol. 2020;318(5):H1219–32.

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by grants AG050049, AG057842, P20GM104357, and HL138685 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Fan.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Roman, R.J. & Fan, F. Hippocampus is more susceptible to hypoxic injury: has the Rosetta Stone of regional variation in neurovascular coupling been deciphered?. GeroScience 44, 127–130 (2022). https://doi.org/10.1007/s11357-021-00449-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-021-00449-4

Keywords

Navigation