Skip to main content
Log in

Production of Oligoalginate via Solution Plasma Process and Its Capability of Biological Growth Enhancement

  • Original Article
  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The objective of the study was to depolymerize alginate into short-length oligoalginates, adopting the simple solution plasma process (SPP) technique, for successful use in free radical scavenging and growth promotion in cell culture and agricultural practices. Alginate at various concentrations was depolymerized to oligoalginates using SPP by discharging for various times. The depolymerization into oligoalginates was proved by DNS, TLC, FT-IR, and HPAEC analyses and caused decrease in viscosity. Oligoalginates derived from 0.5% alginate (100 mg∙mL−1) showed the highest antioxidant activities in vitro. The oligoalginates enhanced growth of the human embryonic kidney (HEK293) cells to significant levels in a concentration-dependent manner without any extent of toxicity. The oligoalginates also promoted growth of lettuce. Thus, SPP is a powerful technique to break down alginate into oligoalginates that can be utilized as a free radical scavenger and as a growth promoter of animal cells and agricultural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Materials

Not applicable.

References

  1. Gacesa, P. (1988). Alginates. A. Carbohydrate Polymers, 8, 161–182.

    Article  CAS  Google Scholar 

  2. Liu, J., Yang, S., Li, X., Yan, Q., Reaney, M. J. T., & Jian, Z. (2019). Alginate Oligosaccharides: Production, Biological Activities, and Potential Applications. Comprehensive Reviews in Food Science and Food Safety, 18, 1859–1881.

    Article  CAS  Google Scholar 

  3. Lee, D.-W., Choi, W.-S., Byun, M.-W., Park, H.-J., Yu, Y.-M., & Lee, C.-M. (2003). Effect of γ-Irradiation on Degradation of Alginate. Journal of Agriculture and Food Chemistry, 51(16), 4819–4823.

    Article  CAS  Google Scholar 

  4. Brownlee, I. A., Allen, A., Pearson, J. P., Dettmar, P. W., Havler, M. E., Atherton, M. R., & Onsoyen, E. (2005). Alginate as a source of dietary fiber. Critical Reviews in Food Science and Nutrition, 45, 497–510.

    Article  CAS  Google Scholar 

  5. Murat, S., Rendevski, S., Akkas-Kavaklı, P., & Amir, S. (2010). Effect of G/M ratio on the radiation-induced degradation of sodium alginate. Radiation Physics and Chemistry, 79, 279–282.

    Article  Google Scholar 

  6. Zhao, X., Li, B., Xue, C., & Sun, L. (2012). Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 24, 295–300.

    Article  CAS  Google Scholar 

  7. Kelishomi, Z. H., Goliaei, B., Mahdavi, H., Nikoofar, A., Rahimi, M., Movahedi, A. M., et al. (2016). Antioxidant activity of low molecular weight alginate produced by thermal treatment. Food Chemistry, 196, 897–902.

    Article  CAS  Google Scholar 

  8. Szekalska, M., Puciłowska, A., Szymańska, E., Ciosek, P., & Winnicka, K. (2016). Alginate: Current Use and Future Perspectives in Pharmaceutical and Biomedical Applications. International Journal of Polymer Science, 2016. https://doi.org/10.1155/2016/7697031

  9. Nagasawa, N., Mitomo, H., Yoshii, F., & Kume, T. (2000). Radiation-induced degradation of sodium alginate. Polymer Degradation and Stability, 69, 279–285.

    Article  CAS  Google Scholar 

  10. Bolewski, K. (1967). Rate of ultrasonic degradation of sodium alginate in solutions of various ionic strengths. PolymerScience USSR, 9(2), 487–494.

    Article  Google Scholar 

  11. Kim, H., Chung, J., Wang, D., Lee, J., Woo, H. C., Choi, I. G., & Kim, G. H. (2012). Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginatelyase cloned from Saccharophagus degradans. Applied Microbiology and Biotechnology, 93, 2233–2239.

    Article  CAS  Google Scholar 

  12. MubarakAli, D., Kim, S. C., Lee, S., & Kim, J. (2015). One-step synthesis and characterization of broad spectrum antimicrobial efficacy of cellulose/ silver nanobiocomposites using solution plasma process. RSC Advance, (118), 1511–1517.

  13. MubarakAli, D., Saravanakumar, K., Akbarsha, M. A., Lee, S., & Kim, J. (2019). Synthesis of Biocompatible Cellulose-Coated Nanoceria with pH-Dependent Antioxidant Property. ACS Applied Bio Materials, 2(5), 1792–1801.

    Article  Google Scholar 

  14. Nam, S., MubarakAli, D., & Kim, J. (2016). Characterization of alginate/silver nanobiocomposites synthesized by solution plasma process and their antimicrobial properties. Journal of Nanomaterials. Article ID 4712813, 9 pages.

  15. MubarakAli, D., Lee, S., & Kim, J. (2018). Solution plasma mediated formation of low molecular weight chitosan and its application as a biomaterial. International Journal of Biological Macromolecules, 118, 1511–1517.

    Article  Google Scholar 

  16. Luan, Q., Ha, T. T., Uyen, P., & Hien, N. Q. (2012). Preparation of Oligoalginate Plant Growth Promoter by gamma Irradiation of Alginate Solution Containing Hydrogen Peroxide. Journal of Agricultural and Food Chemistry, 60(7), 737–741.

    Article  Google Scholar 

  17. Rhein-Knudsen, N., Ale, M., & Meyer, A. (2015). Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Marine Drugs, 13, 3340–3359.

    Article  Google Scholar 

  18. Khanra, S., Mondal, M., Halder, G., Tiwari, O. N., Gayen, K., & Bhowmick, T. K. (2018). Downstream processing of microalgae for pigments, protein and carbohydrate in industrial application: A review. Food and Bioproducts Processing, 110, 60–84.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  20. Yang, Z., Li, J. P., & Guana, J. (2004). Preparation and characterization of oligomannuronates from alginate degraded by hydrogen peroxide. Carbohydrate Polymers, 58, 115–121.

    Article  CAS  Google Scholar 

  21. Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–66.

    Article  CAS  Google Scholar 

  22. MubarakAli, D., Manzoor, M. A., Sabarinathan, A., Devi, C. A., Rekha, P. D., Thajuddin, N., & Lee, S. Y. (2019). An investigation of antibiofilm and cytotoxic property of MgO nanoparticles. Biocatalysis and Agricultural Biotechnology, 18, 101069.

  23. Cohen, I. R., Grassel, S., & Murdoch, A. D. (1993). Structural characterization of the complete human perlecan gene and its promoter. Proceedings of the National Academy of Sciences of the United States of America, 90, 10404–10408.

    Article  CAS  Google Scholar 

  24. Lord, C., Rutter, M., DiLavore, P. C., Risi, S., Gotham, K., & Bishop, S. (2012). emopenAutism diagnostic observation schedule: ADOSemclose. Western Psychological Services: Los Angeles.

    Google Scholar 

  25. Watthanaphanit, A., & Saito, N. E. (2013). Effect of polymer concentration on the depolymerization of sodium alginate by the solution plasma process. Polymer Degradation and Stability, 98, 1072–1080.

    Article  CAS  Google Scholar 

  26. Swift, S. M., Hudgens, J. W., Heselpoth, R. D., Bales, P. M., & Nelson, D. C. (2014). Characterization of AlgMsp, an Alginate Lyase from Microbulbifer sp. Plos One, 9(11), e112939.

  27. Wang, X. T., Wang, L. L., Che, J., Li, X. Y., Li, J. G., Wang, J., & Xu, Y. P. (2014). Isolation of a novel alginate lyaseproducing Bacillus litoralis strain and its potential to ferment Sargassumhorneri for biofertilizer. Aquaculture, 434, 434–441.

    Article  CAS  Google Scholar 

  28. Sakugawa, K., Ikeda, A., Takemura, A., & Ono, H. (2004). Simplified method for estimation of composition of alginates by FTIR. Journal of Applied Polymer Science, 93, 1372–1377.

    Article  CAS  Google Scholar 

  29. Lawrie, G., Keen, I., Drew, B., Chandler-Temple, A., Rintoul, L., Fredericks, P., & Grøndahl, L. (2007). Interactions between alginate and chitosan biopolymers characterized using FTIR and XPS. Biomacromole, 8, 2533–2541.

    Article  CAS  Google Scholar 

  30. Salachna, P., Grzeszczuk, M., Meller, E., & Soból, M. (2018). Oligo-Alginate with Low Molecular Mass Improves Growth and Physiological Activity of Eucomisautumnalis under Salinity Stress. Molecules, 23, 812. https://doi.org/10.3390/molecules23040812.

    Article  CAS  PubMed Central  Google Scholar 

  31. Hernandez-Marin, E., & Martínez, A. (2012). Carbohydrates and Their Free Radical Scavenging Capability: A Theoretical Study. The Journal of Physical Chemistry B, 116(32), 9668–9675.

    Article  CAS  Google Scholar 

  32. Falkeborg, M., Cheong, L. Z., Gianfico, C., Sztukiel, K. M., Kristensen, K., Glasius, M., & Guo, Z. (2014). Alginate oligosaccharides: Enzymatic preparation and antioxidant property evaluation. Food Chemistry, 164, 185–194.

    Article  CAS  Google Scholar 

  33. Galateanu, B., Dimonie, D., Vasile, E., Nae, S., Cimpean, A., & Costache, M. (2012). Layer-shaped alginate hydrogels enhance the biological performance of human adipose-derived stem cells. BMC Biotechnology, 2(1), 35.

    Article  Google Scholar 

  34. Yan, G. L., Guo, Y. M., Yuan, J. M., Liu, D., & Zhang, B. K. (2011). Sodium alginate oligosaccharides from brown algae inhibit Salmonella enteritidis colonization in broiler chickens. Poultry Science, 90, 1441–1448.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

All the authors are thankful to Prof. M.A. Akbarsha, Emeritus Professor, National College (NCT), India, for proofreading the article.

Funding

This study was supported by the grant from Incheon National University, Republic of Korea, 2016.

Author information

Authors and Affiliations

Authors

Contributions

DM: data acquisition, writing manuscript; ML: data acquisition; MM: cytotoxicity assay; SL: review and proofreading; JK: review, guidance, and proofreading.

Corresponding authors

Correspondence to Sang-Yul Lee or Jung-Wan Kim.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Clean and rapid production of oligoalginate through solution plasma process.

• Oligoalginates derived from 0.5% alginate (100 mg mL−1) promoted growth of lettuce.

• Interestingly, oligoalginate promoted the growth of HEK293 cells with no toxicity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MubarakAli, D., Lee, M., Manzoor, M.A. et al. Production of Oligoalginate via Solution Plasma Process and Its Capability of Biological Growth Enhancement. Appl Biochem Biotechnol 193, 4097–4112 (2021). https://doi.org/10.1007/s12010-021-03640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-021-03640-7

Keywords

Navigation