Skip to main content

Advertisement

Log in

Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Plasma-derived extracellular vesicles (EV) can serve as markers of cell damage/disease but can also have therapeutic utility depending on the nature of their cargo, such as miRNA. Currently, there are challenges and lack of innovations regarding early diagnosis and therapeutic options within different aspects of management of patients suffering from chronic pancreatitis (CP). Use of EV as biomarkers for pancreatic health and/or as adjuvant therapy would make a difference in management of these patients. The aim of this study was to characterize the miRNA cargo of EV purified from the plasma of CP patients and compared to those of healthy participants. EVs were isolated from plasma of 15 CP patients and 10 healthy controls. Nanoparticle tracking analysis was used to determine frequency and size, while NanoString technology was used to characterize the miRNA cargo. Relevant clinical parameters were correlated with EV miRNA cargo. ~ 30 miRNA species were identified to have significantly (p < 0.05) different expression in EV from individuals with CP compared to healthy individuals; ~ 40 miRNA were differentially expressed in EV from pre-diabetic versus non-diabetic CP patients. miR-579-3p, while exhibiting significantly lower (~ 16-fold) expression in CP compared to healthy and lower (~ 24-fold) in CP narcotic users compared to the non-users, is actually enriched (~ 32-fold) within EV in pre-diabetic CP patients compared to non-diabetic CP patients. A unique pattern was identified in female CP patients. These data support the prospect of using a plasma-derived EV cargo to assess pancreatic health and its therapeutic potential in CP patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

At request.

References

  1. Braganza JM, Lee SH, McCloy RF, McMahon MJ (2011) Chronic pancreatitis. Lancet 377(9772):1184–1197

    Article  CAS  Google Scholar 

  2. Desai CS, Stephenson DA, Khan KM, Jie T, Gruessner AC, Rilo HL et al (2011) Novel technique of total pancreatectomy before autologous islet transplants in chronic pancreatitis patients. J Am Coll Surg 213(6):e29-34

    Article  Google Scholar 

  3. Zhao X, Cui N, Wang X, Cui Y (2017) Surgical strategies in the treatment of chronic pancreatitis: an updated systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore) 96(9):e6220

    Article  Google Scholar 

  4. Blondet JJ, Carlson AM, Kobayashi T, Jie T, Bellin M, Hering BJ et al (2007) The role of total pancreatectomy and islet autotransplantation for chronic pancreatitis. Surg Clin North Am 87(6):1477–1501

    Article  Google Scholar 

  5. Sohn T, Campbell KA, Pitt HA, Sauter PK, Coleman J, Lillemoe KD et al (2000) Quality of life and long-term survival after surgery for chronic pancreatitis. J Gastrointest Surg 4(4):355–365

    Article  CAS  Google Scholar 

  6. Li X, Meng Q, Zhang L (2018) The fate of allogeneic pancreatic islets following intraportal transplantation: challenges and solutions. J Immunol Res 2018:2424586

    PubMed  PubMed Central  Google Scholar 

  7. Desai CS, Khan KM, Cui WX (2015) Total pancreatectomy-Autologous islet cell transplantation (TP-AIT) for chronic pancreatitis – What defines success? CellR4 3(2):e1536

    Google Scholar 

  8. Eriksson O, Eich T, Sundin A, Tibell A, Tufveson G, Andersson H et al (2009) Positron emission tomography in clinical islet transplantation. Am J Transplant 9(12):2816–2824

    Article  CAS  Google Scholar 

  9. Sakata N, Hayes P, Tan A, Chan N, Mace J, Peverini R et al (2009) MRI assessment of ischemic liver after intraportal islet transplantation. Transplantation 87(6):825–830

    Article  Google Scholar 

  10. Desai CS, Khan KM, Megawa FB, Rilo H, Jie T, Gruessner A et al (2013) Influence of liver histopathology on transaminitis following total pancreatectomy and autologous islet transplantation. Dig Dis Sci 58(5):1349–1354

    Article  Google Scholar 

  11. Deters N, Stokes R, Gunton J (2011) Islet transplantation: factors in short-term islet survival. Arch Immunol Ther Exp (Warsz) 59(6):421–429

    Article  Google Scholar 

  12. Helwa I, Cai J, Drewry M, Zimmerman A, Dinkins M, Khaled M et al (2017) A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS ONE 12(1):e0170628

    Article  Google Scholar 

  13. Caby M, Lankar D, Vincendeau-Scherrer C, Raposo G, Bonnerot C (2005) Exosomal-like vesicles are present in human blood plasma. Int Immunol 17(7):879–887

    Article  CAS  Google Scholar 

  14. Qin J, Xu Q (2014) Functions and application of exosomes. Acta Pol Pharm 71(4):537–543

    PubMed  Google Scholar 

  15. Gangoda L, Boukouris S, Liem M, Kalra H, Mathivanan S (2015) Extracellular vesicles including exosomes are mediators of signal transduction: are they protective or pathogenic? Proteomics 15(2–3):260–271

    Article  CAS  Google Scholar 

  16. Tan L, Wu H, Liu Y, Zhao M, Li D, Lu Q (2016) Recent advances of exosomes in immune modulation and autoimmune diseases. Autoimmunity 49(6):357–365

    Article  CAS  Google Scholar 

  17. Baranyai T, Herczeg K, Onódi Z, Voszka I, Módos K, Marton N et al (2015) Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS ONE 10(12):e0145686

    Article  Google Scholar 

  18. Giri K, de Beaurepaire L, Jegou D, Lavy M, Mosser M, Dupont A et al (2020) Molecular and functional diversity of distinct subpopulations of the stressed insulin-secreting cell’s vesiculome. Front Immunol 11:1814

    Article  CAS  Google Scholar 

  19. Yamamoto S, Azuma E, Muramatsu M, Hamashima T, Ishii Y, Sasahara M (2016) Significance of extracellular vesicles: pathobiological roles in disease. Cell Struct Funct 41(2):137–143

    Article  CAS  Google Scholar 

  20. Burnouf T, Chou M, Goubran H, Cognasse F, Garraud O, Seghatchian J (2015) An overview of the role of microparticles/microvesicles in blood components: are they clinically beneficial or harmful? Transfus Apher Sci 53(2):137–145

    Article  Google Scholar 

  21. Zhang Y, Liu Y, Liu H, Tang W (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  Google Scholar 

  22. Geiss GK, Bumgarner RE, Birditt B, Dahl T, Dowidar N, Dunaway DL et al (2008) Direct multiplexed measurement of gene expression with color-coded probe pairs. Nat Biotechnol 26(3):317–325

    Article  CAS  Google Scholar 

  23. Daoud A, Mulholland E, Cole G, McCarthy H (2019) MicroRNAs in pancreatic cancer: biomarkers, prognostic, and therapeutic modulators. BMC Cancer 19(1):1130

    Article  CAS  Google Scholar 

  24. Wu L, Zhou W, Zhou J, Wei Y, Wang H, Liu X et al (2020) Circulating exosomal microRNAs as novel potential detection biomarkers in pancreatic cancer. Oncol Lett 20(2):1432–1440

    Article  CAS  Google Scholar 

  25. Coleman L, Maile R, Jones S, Cairns B, Crews F (2018) HMGB1/IL-1β complexes in plasma microvesicles modulate immune responses to burn injury. PLoS ONE 13(3):e0195335

    Article  Google Scholar 

  26. Guo X-Y, Xiao F, Li J, Zhou Y-N, Zhang W-J, Sun B et al (2019) Exosomes and pancreatic diseases: status, challenges, and hopes. Int J Biol Sci 15(9):1846–1860

    Article  CAS  Google Scholar 

  27. Bonjoch L, Casas V, Carrascal M, Closa D (2016) Involvement of exosomes in lung inflammation associated with experimental acute pancreatitis. J Pathol 240(2):235–245

    Article  CAS  Google Scholar 

  28. Severino V, Dumonceau J, Delhaye M, Moll S, Annessi-Ramseyer I, Robin X et al (2017) Extracellular vesicles in bile as markers of malignant biliary stenoses. Gastroenterology 153(2):495–504

    Article  Google Scholar 

  29. Zhou X, Huang Z, Xu L, Zhu M, Zhang L, Zhang H et al (2016) A panel of 13-miRNA signature as a potential biomarker for predicting survival in pancreatic cancer. Oncotarget 7(43):69616–69624

    Article  Google Scholar 

  30. Baradaran B, Shahbazi R, Khordadmehr M (2019) Dysregulation of key microRNAs in pancreatic cancer development. Biomed Pharmacother 109:1008–1015

    Article  CAS  Google Scholar 

  31. Xu J, Cao Z, Liu W, You L, Zhou L, Wang C et al (2016) Plasma miRNAs effectively distinguish patients with pancreatic cancer from controls: a multicenter study. Ann Surg 263(6):1173–1179

    Article  Google Scholar 

  32. Kaur S, Krishn SR, Rachagani S, Batra SK (2015) Significance of microRNA-based biomarkers for pancreatic cancer. Ann Transl Med 3(18):277

    PubMed  PubMed Central  Google Scholar 

  33. Jia J, Cui Y, Tan Z, Ma W, Jiang Y (2020) MicroRNA-579-3p exerts neuroprotective effects against ischemic stroke via anti-inflammation and anti-apoptosis. Neuropsychiatr Dis Treat 16:1229

    Article  CAS  Google Scholar 

  34. Jee YH, Wang J, Yue S, Jennings M, Clokie SJ, Nilsson O et al (2018) mir-374-5p, mir-379-5p, and mir-503-5p regulate proliferation and hypertrophic differentiation of growth plate chondrocytes in male rats. Endocrinology 159(3):1469

    Article  CAS  Google Scholar 

  35. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319(5867):1244–1247

    Article  CAS  Google Scholar 

  36. Ibrahim A, Marbán E (2016) Exosomes: fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 78:67–83

    Article  CAS  Google Scholar 

  37. Willis G, Kourembanas S, Mitsialis S (2017) Toward exosome-based therapeutics: isolation, heterogeneity, and fit-for-purpose potency. Front Cardiovasc Med 4:63

    Article  Google Scholar 

  38. Kishore R, Khan M (2016) More than tiny sacks: stem cell exosomes as cell-free modality for cardiac repair. Circ Res 118(2):330–343

    Article  CAS  Google Scholar 

  39. Colao I, Corteling R, Bracewell D, Wall I (2018) Manufacturing exosomes: a promising therapeutic platform. Trends Mol Med 24(3):242–256

    Article  CAS  Google Scholar 

  40. Rashed M, Bayraktar E, Helal G, Abd-Ellah M, Amero P, Chavez-Reyes A et al (2017) Exosomes: from garbage bins to promising therapeutic targets. Int J Mol Sci 18(3):538

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the staff of the UNC Delta Translational Services Recharge Center and the UNC Nanomedicines Characterization Core Facility.

Funding

This work was partly funded by NIH NIGMS T32 GM008450 (CM) and NIEHS T32 ES007126 (MW).

Author information

Authors and Affiliations

Authors

Contributions

Conception or design of the work: CSD, AK, RM, SMW. Data collection: MAB, MLW, CM, XB, BMW. Data analysis and interpretation: CSD, AK, RM, SMW, CM, MLW, LGC. Drafting the article: RM, CSD. Critical revision of the article: CSD, TB, SMW, AK, RM, CM.

Corresponding author

Correspondence to Chirag S. Desai.

Ethics declarations

Conflict of interest

AK discloses a relationship with AssureImmune Cord Blood Bank and Aceso Therapeutic that includes equity.

Ethical approval

This study has been approved by the Institutional Review Board at the University of North Carolina.

Consent to participate

Informed consent was obtained for each participant.

Consent for publication

All participants consented to publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desai, C.S., Khan, A., Bellio, M.A. et al. Characterization of extracellular vesicle miRNA identified in peripheral blood of chronic pancreatitis patients. Mol Cell Biochem 476, 4331–4341 (2021). https://doi.org/10.1007/s11010-021-04248-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-021-04248-5

Keywords

Navigation