Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Human Serum Albumin Nanoparticles as a Carrier for On-Demand Sorafenib Delivery

Author(s): Tania Mariastella Caputo, Angela Maria Cusano*, Menotti Ruvo*, Anna Aliberti and Andrea Cusano

Volume 23, Issue 9, 2022

Published on: 26 August, 2021

Page: [1214 - 1225] Pages: 12

DOI: 10.2174/1389201022666210826152311

Price: $65

Abstract

Background: Drug delivery systems based on Human Serum Albumin (HSA) have been widely investigated due to their capability to interact with several molecules together with their nontoxicity, non-immunogenicity and biocompatibility. Sorafenib (SOR) is a kinase inhibitor used as the firstline treatment in hepatic cancer. However, because of its several intrinsic drawbacks (low solubility and bioavailability), there is a growing need for discovering new carriers able to overcome the current limitations.

Objectives: To study HSA particles loaded with SOR as a thermal responsive drug delivery system.

Methods: A detailed spectroscopy analysis of the HSA and SOR interaction in solution was carried out in order to characterize the temperature dependence of the complex. Based on this study, the synthesis of HSA particles loaded with SOR was optimized. Particles were characterized by Dynamic Light Scattering, Atomic Force Microscopy and by spectrofluorometer. Encapsulation efficiency and in vitro drug release were quantified by RP-HPLC.

Results: HSA particles were monodispersed in size (≈ 200 nm); encapsulation efficiency ranged from 25% to 58%. Drug release studies that were performed at 37 °C and 50 °C showed that HS5 particles achieved a drug release of 0.430 μM in 72 hours at 50 °C in PBS buffer, accomplishing a 4.6-fold overall SOR release enhancement following a temperature increase from 37 °C to 50 °C.

Conclusion: The system herein presented has the potential to exert a therapeutic action (in the nM range) triggering a sustained temperature-controllable release of relevant drugs.

Keywords: Human serum albumin, sorafenib, hepatocellular carcinoma, desolvation technique, drug delivery, stimuli responsive particles.

« Previous
Graphical Abstract
[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[2]
El-Serag, H.B.; Rudolph, K.L. Hepatocellular carcinoma: epidemiology and molecular carcinogenesis. Gastroenterology, 2007, 132(7), 2557-2576.
[http://dx.doi.org/10.1053/j.gastro.2007.04.061] [PMID: 17570226]
[3]
Venook, A.P.; Papandreou, C.; Furuse, J.; de Guevara, L.L. The incidence and epidemiology of hepatocellular carcinoma: a global and regional perspective. Oncologist, 2010, 15(Suppl. 4), 5-13.
[http://dx.doi.org/10.1634/theoncologist.2010-S4-05] [PMID: 21115576]
[4]
Thorgeirsson, S.S.; Grisham, J.W. Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet., 2002, 31(4), 339-346.
[http://dx.doi.org/10.1038/ng0802-339] [PMID: 12149612]
[5]
Ramakrishna, G.; Rastogi, A.; Trehanpati, N.; Sen, B.; Khosla, R.; Sarin, S.K. From cirrhosis to hepatocellular carcinoma: new molecular insights on inflammation and cellular senescence. Liver Cancer, 2013, 2(3-4), 367-383.
[http://dx.doi.org/10.1159/000343852] [PMID: 24400224]
[6]
Pianko, S.; Patella, S.; Sievert, W. Alcohol consumption induces hepatocyte apoptosis in patients with chronic hepatitis C infection. J. Gastroenterol. Hepatol., 2000, 15(7), 798-805.
[http://dx.doi.org/10.1046/j.1440-1746.2000.02083.x] [PMID: 10937688]
[7]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[8]
Chen, C.; Wang, G. Mechanisms of hepatocellular carcinoma and challenges and opportunities for molecular targeted therapy. World J. Hepatol., 2015, 7(15), 1964-1970.
[http://dx.doi.org/10.4254/wjh.v7.i15.1964] [PMID: 26244070]
[9]
Keating, G.M.; Santoro, A. Sorafenib: a review of its use in advanced hepatocellular carcinoma. Drugs, 2009, 69(2), 223-240.
[http://dx.doi.org/10.2165/00003495-200969020-00006] [PMID: 19228077]
[10]
Adnane, L.; Trail, P.A.; Taylor, I.; Wilhelm, S.M. Sorafenib (BAY 43-9006, Nexavar), a dual-action inhibitor that targets RAF/MEK/ERK pathway in tumor cells and tyrosine kinases VEGFR/PDGFR in tumor vasculature. Methods Enzymol., 2006, 407, 597-612.
[http://dx.doi.org/10.1016/S0076-6879(05)07047-3] [PMID: 16757355]
[11]
Cheng, A.L.; Kang, Y.K.; Chen, Z.; Tsao, C.J.; Qin, S.; Kim, J.S.; Luo, R.; Feng, J.; Ye, S.; Yang, T.S.; Xu, J.; Sun, Y.; Liang, H.; Liu, J.; Wang, J.; Tak, W.Y.; Pan, H.; Burock, K.; Zou, J.; Voliotis, D.; Guan, Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomised, double-blind, placebo-controlled trial. Lancet Oncol., 2009, 10(1), 25-34.
[http://dx.doi.org/10.1016/S1470-2045(08)70285-7] [PMID: 19095497]
[12]
Li, Y.; Gao, Z.H.; Qu, X.J. The adverse effects of sorafenib in patients with advanced cancers. Basic Clin. Pharmacol. Toxicol., 2015, 116(3), 216-221.
[http://dx.doi.org/10.1111/bcpt.12365] [PMID: 25495944]
[13]
Wang, X.Q.; Fan, J.M.; Liu, Y.O.; Zhao, B.; Jia, Z.R.; Zhang, Q. Bioavailability and pharmacokinetics of sorafenib suspension, nanoparticles and nanomatrix for oral administration to rat. Int. J. Pharm., 2011, 419(1-2), 339-346.
[http://dx.doi.org/10.1016/j.ijpharm.2011.08.003] [PMID: 21843612]
[14]
Babos, G.; Biró, E.; Meiczinger, M.; Feczkó, T. Dual Drug Delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA Polymeric Nanoparticles. Polymers (Basel), 2018, 10(8), E895.
[http://dx.doi.org/10.3390/polym10080895] [PMID: 30960820]
[15]
Benizri, S.; Ferey, L.; Alies, B.; Mebarek, N.; Vacher, G.; Appavoo, A.; Staedel, C.; Gaudin, K.; Barthélémy, P. Nucleoside-lipid-based nanocarriers for sorafenib delivery. Nanoscale Res. Lett., 2018, 13(1), 17.
[http://dx.doi.org/10.1186/s11671-017-2420-2] [PMID: 29327307]
[16]
Caputo, T.M. Stimuli‐responsive hybrid microgels for controlled drug delivery: Sorafenib as a model drug. J. Appl. Polym. Sci., 2020, •••, 50147.
[17]
Depalo, N. Sorafenib delivery nanoplatform based on superparamagnetic iron oxide nanoparticles magnetically targets hepatocellular carcinoma. Nano Res., 2017, 10(7), 2431-2448.
[http://dx.doi.org/10.1007/s12274-017-1444-3]
[18]
Gao, W. Preparation and evaluation of folate-decorated human serum albumin nanoparticles for the targeted delivery of sorafenib to enhance antihepatocarcinoma efficacy. J. Drug Deliv. Sci. Technol., 2019, 54, 101349.
[http://dx.doi.org/10.1016/j.jddst.2019.101349]
[19]
Khan, M.A. Current state and prospects of nano-delivery systems for sorafenib. International Journal of Polymeric Materials and Polymeric Biomaterials, 2018, 67(18), 1105-1115.
[http://dx.doi.org/10.1080/00914037.2018.1429434]
[20]
Xiao, Y.; Liu, Y.; Yang, S.; Zhang, B.; Wang, T.; Jiang, D.; Zhang, J.; Yu, D.; Zhang, N. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf. B Biointerfaces, 2016, 141, 83-92.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.016] [PMID: 26844644]
[21]
Krukiewicz, K.; Zak, J.K. Biomaterial-based regional chemotherapy: Local anticancer drug delivery to enhance chemotherapy and minimize its side-effects. Mater. Sci. Eng. C, 2016, 62, 927-942.
[http://dx.doi.org/10.1016/j.msec.2016.01.063] [PMID: 26952500]
[22]
Kim, J.K.; Kim, H.J.; Chung, J.Y.; Lee, J.H.; Young, S.B.; Kim, Y.H. Natural and synthetic biomaterials for controlled drug delivery. Arch. Pharm. Res., 2014, 37(1), 60-68.
[http://dx.doi.org/10.1007/s12272-013-0280-6] [PMID: 24197492]
[23]
Fanali, G.; di Masi, A.; Trezza, V.; Marino, M.; Fasano, M.; Ascenzi, P. Human serum albumin: from bench to bedside. Mol. Aspects Med., 2012, 33(3), 209-290.
[http://dx.doi.org/10.1016/j.mam.2011.12.002] [PMID: 22230555]
[24]
He, X.M.; Carter, D.C. Atomic structure and chemistry of human serum albumin. Nature, 1992, 358(6383), 209-215.
[http://dx.doi.org/10.1038/358209a0] [PMID: 1630489]
[25]
Carter, D.C.; He, X.M.; Munson, S.H.; Twigg, P.D.; Gernert, K.M.; Broom, M.B.; Miller, T.Y. Three-dimensional structure of human serum albumin. Science, 1989, 244(4909), 1195-1198.
[http://dx.doi.org/10.1126/science.2727704] [PMID: 2727704]
[26]
Carter, D.C.; Ho, J.X. Structure of serum albumin.Advances in protein chemistry; Elsevier, 1994, pp. 153-203.
[27]
Sudlow, G.; Birkett, D.J.; Wade, D.N. The characterization of two specific drug binding sites on human serum albumin. Mol. Pharmacol., 1975, 11(6), 824-832.
[PMID: 1207674]
[28]
Karimi, M.; Bahrami, S.; Ravari, S.B.; Zangabad, P.S.; Mirshekari, H.; Bozorgomid, M.; Shahreza, S.; Sori, M.; Hamblin, M.R. Albumin nanostructures as advanced drug delivery systems. Expert Opin. Drug Deliv., 2016, 13(11), 1609-1623.
[http://dx.doi.org/10.1080/17425247.2016.1193149] [PMID: 27216915]
[29]
Gayakwad, S.G.; Bejugam, N.K.; Akhavein, N.; Uddin, N.A.; Oettinger, C.E.; D’Souza, M.J. Formulation and in vitro characterization of spray-dried antisense oligonucleotide to NF-kappaB encapsulated albumin microspheres. J. Microencapsul., 2009, 26(8), 692-700.
[http://dx.doi.org/10.3109/02652040802666910] [PMID: 19888878]
[30]
Miele, E.; Spinelli, G.P.; Miele, E.; Tomao, F.; Tomao, S. Albumin-bound formulation of paclitaxel (Abraxane ABI-007) in the treatment of breast cancer. Int. J. Nanomedicine, 2009, 4, 99-105.
[PMID: 19516888]
[31]
Elzoghby, A.O.; Samy, W.M.; Elgindy, N.A. Albumin-based nanoparticles as potential controlled release drug delivery systems. J. Control. Release, 2012, 157(2), 168-182.
[http://dx.doi.org/10.1016/j.jconrel.2011.07.031] [PMID: 21839127]
[32]
Weber, C.; Kreuter, J.; Langer, K. Desolvation process and surface characteristics of HSA-nanoparticles. Int. J. Pharm., 2000, 196(2), 197-200.
[http://dx.doi.org/10.1016/S0378-5173(99)00420-2] [PMID: 10699717]
[33]
Langer, K.; Anhorn, M.G.; Steinhauser, I.; Dreis, S.; Celebi, D.; Schrickel, N.; Faust, S.; Vogel, V. Human serum albumin (HSA) nanoparticles: reproducibility of preparation process and kinetics of enzymatic degradation. Int. J. Pharm., 2008, 347(1-2), 109-117.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.028] [PMID: 17681686]
[34]
Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; von Briesen, H.; Schubert, D. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int. J. Pharm., 2003, 257(1-2), 169-180.
[http://dx.doi.org/10.1016/S0378-5173(03)00134-0] [PMID: 12711172]
[35]
Habeeb, A.J.; Hiramoto, R. Reaction of proteins with glutaraldehyde. Arch. Biochem. Biophys., 1968, 126(1), 16-26.
[http://dx.doi.org/10.1016/0003-9861(68)90554-7] [PMID: 4174905]
[36]
Eso, Y.; Marusawa, H. Novel approaches for molecular targeted therapy against hepatocellular carcinoma. Hepatol. Res., 2018, 48(8), 597-607.
[http://dx.doi.org/10.1111/hepr.13181] [PMID: 29689631]
[37]
Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; Faraoni, R.; Floyd, M.; Hunt, J.P.; Lockhart, D.J.; Milanov, Z.V.; Morrison, M.J.; Pallares, G.; Patel, H.K.; Pritchard, S.; Wodicka, L.M.; Zarrinkar, P.P. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol., 2008, 26(1), 127-132.
[http://dx.doi.org/10.1038/nbt1358] [PMID: 18183025]
[38]
Afonso, F.J.; Anido, U.; Fernández-Calvo, O.; Vázquez-Estévez, S.; León, L.; Lázaro, M.; Ramos, M.; Antón-Aparicio, L. Comprehensive overview of the efficacy and safety of sorafenib in advanced or metastatic renal cell carcinoma after a first tyrosine kinase inhibitor. Clin. Transl. Oncol., 2013, 15(6), 425-433.
[http://dx.doi.org/10.1007/s12094-012-0985-x] [PMID: 23401018]
[39]
Zhang, J-Y.; He, B.; Qu, W.; Cui, Z.; Wang, Y.B.; Zhang, H.; Wang, J.C.; Zhang, Q. Preparation of the albumin nanoparticle system loaded with both paclitaxel and sorafenib and its evaluation in vitro and in vivo. J. Microencapsul., 2011, 28(6), 528-536.
[http://dx.doi.org/10.3109/02652048.2011.590614] [PMID: 21702701]
[40]
Malarvizhi, G.L.; Retnakumari, A.P.; Nair, S.; Koyakutty, M. Transferrin targeted core-shell nanomedicine for combinatorial delivery of doxorubicin and sorafenib against hepatocellular carcinoma. Nanomedicine (Lond.), 2014, 10(8), 1649-1659.
[http://dx.doi.org/10.1016/j.nano.2014.05.011] [PMID: 24905399]
[41]
Sorafenib - DrugBank. Available from:https://go.drugbank.com/drugs/DB00398
[42]
Callaghan, C.; Peralta, D.; Liu, J.; Mandava, S.H.; Maddox, M.; Dash, S.; Tarr, M.A.; Lee, B.R. Combined treatment of tyrosine kinase inhibitor–labeled gold nanorod encapsulated albumin with laser thermal ablation in a renal cell carcinoma model. J. Pharm. Sci., 2016, 105(1), 284-292.
[http://dx.doi.org/10.1016/j.xphs.2015.11.017] [PMID: 26852860]
[43]
Wetzel, R.; Becker, M.; Behlke, J.; Billwitz, H.; Böhm, S.; Ebert, B.; Hamann, H.; Krumbiegel, J.; Lassmann, G. Temperature behaviour of human serum albumin. Eur. J. Biochem., 1980, 104(2), 469-478.
[http://dx.doi.org/10.1111/j.1432-1033.1980.tb04449.x] [PMID: 6244951]
[44]
Lakowicz, J.R. Principles of fluorescence spectroscopy; Springer science & business media, 2013.
[45]
Lu, Z. In Vitro Characterization for Human Serum Albumin Binding Sorafenib, A Multi Kinase Inhibitor: Spectroscopic Study. J. Solution Chem., 2014, 43(11), 2010-2025.
[http://dx.doi.org/10.1007/s10953-014-0256-2]
[46]
Shi, J-H.; Chen, J.; Wang, J.; Zhu, Y.Y.; Wang, Q. Binding interaction of sorafenib with bovine serum albumin: Spectroscopic methodologies and molecular docking. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 149, 630-637.
[http://dx.doi.org/10.1016/j.saa.2015.04.034] [PMID: 25985127]
[47]
Chaiwaree, S.; Prapan, A.; Suwannasom, N.; Laporte, T.; Neumann, T.; Pruß, A.; Georgieva, R.; Bäumler, H. Doxorubicin-loaded human serum albumin submicron particles: preparation, characterization and in vitro cellular uptake. Pharmaceutics, 2020, 12(3), 224.
[http://dx.doi.org/10.3390/pharmaceutics12030224] [PMID: 32131545]
[48]
Villarroel, M.C.; Pratz, K.W.; Xu, L.; Wright, J.J.; Smith, B.D.; Rudek, M.A. Plasma protein binding of sorafenib, a multi kinase inhibitor: in vitro and in cancer patients. Invest. New Drugs, 2012, 30(6), 2096-2102.
[http://dx.doi.org/10.1007/s10637-011-9767-5] [PMID: 22089297]
[49]
Vitali, V. Characterization of serum albumin nanoparticles by sedimentation velocity analysis and electron microscopy. Prog. Colloid Polym. Sci., 2002, 119, 31-36.
[50]
Bae, S.; Ma, K.; Kim, T.H.; Lee, E.S.; Oh, K.T.; Park, E.S.; Lee, K.C.; Youn, Y.S. Doxorubicin-loaded human serum albumin nanoparticles surface-modified with TNF-related apoptosis-inducing ligand and transferrin for targeting multiple tumor types. Biomaterials, 2012, 33(5), 1536-1546.
[http://dx.doi.org/10.1016/j.biomaterials.2011.10.050] [PMID: 22118776]
[51]
Ma, X.; Sun, X.; Hargrove, D.; Chen, J.; Song, D.; Dong, Q.; Lu, X.; Fan, T.H.; Fu, Y.; Lei, Y. A biocompatible and biodegradable protein hydrogel with green and red autofluorescence: preparation, characterization and in vivo biodegradation tracking and modeling. Sci. Rep., 2016, 6, 19370.
[http://dx.doi.org/10.1038/srep19370] [PMID: 26813916]
[52]
Chen, Q.; Liang, C.; Wang, C.; Liu, Z. An imagable and photothermal “Abraxane-like” nanodrug for combination cancer therapy to treat subcutaneous and metastatic breast tumors. Adv. Mater., 2015, 27(5), 903-910.
[http://dx.doi.org/10.1002/adma.201404308] [PMID: 25504416]
[53]
Tazhbayev, Y.; Mukashev, O.; Burkeev, M.; Kreuter, J. Hydroxyurea-loaded albumin nanoparticles: preparation, characterization, and in vitro studies. Pharmaceutics, 2019, 11(8), 410.
[http://dx.doi.org/10.3390/pharmaceutics11080410] [PMID: 31409024]
[54]
Mo, L.; Song, J.G.; Lee, H.; Zhao, M.; Kim, H.Y.; Lee, Y.J.; Ko, H.W.; Han, H.K. PEGylated hyaluronic acid-coated liposome for enhanced in vivo efficacy of sorafenib via active tumor cell targeting and prolonged systemic exposure. Nanomedicine (Lond.), 2018, 14(2), 557-567.
[http://dx.doi.org/10.1016/j.nano.2017.12.003] [PMID: 29248675]
[55]
Li, Z. Human‐serum‐albumin‐coated prussian blue nanoparticles as pH‐/thermotriggered drug‐delivery vehicles for cancer thermochemotherapy. Particle & Particle Systems Characterization, 2016, 33(1), 53-62.
[http://dx.doi.org/10.1002/ppsc.201500189]
[56]
Shi, H.; Cheng, Q.; Yuan, S.; Ding, X.; Liu, Y. Human serum albumin conjugated nanoparticles for pH and redox-responsive delivery of a prodrug of cisplatin. Chemistry, 2015, 21(46), 16547-16554.
[http://dx.doi.org/10.1002/chem.201502756] [PMID: 26405808]
[57]
Zhao, F.; Shen, G.; Chen, C.; Xing, R.; Zou, Q.; Ma, G.; Yan, X. Nanoengineering of stimuli-responsive protein-based biomimetic protocells as versatile drug delivery tools. Chemistry, 2014, 20(23), 6880-6887.
[http://dx.doi.org/10.1002/chem.201400348] [PMID: 24828788]
[58]
Aliberti, A. Optical fiber and device for releasing molecules; Google Patents, 2020.
[59]
Pisco, M.; Cusano, A. Lab-on-fiber technology: a roadmap toward multifunctional plug and play platforms. Sensors (Basel), 2020, 20(17), 4705.
[http://dx.doi.org/10.3390/s20174705] [PMID: 32825396]
[60]
Ricciardi, A.; Crescitelli, A.; Vaiano, P.; Quero, G.; Consales, M.; Pisco, M.; Esposito, E.; Cusano, A. Lab-on-fiber technology: a new vision for chemical and biological sensing. Analyst (Lond.), 2015, 140(24), 8068-8079.
[http://dx.doi.org/10.1039/C5AN01241D] [PMID: 26514109]
[61]
Vaiano, P. Lab on Fiber Technology for biological sensing applications. Laser Photonics Rev., 2016, 10(6), 922-961.
[http://dx.doi.org/10.1002/lpor.201600111]
[62]
Cusano, A. Lab-on-fiber technology; Springer, 2015.
[http://dx.doi.org/10.1007/978-3-319-06998-2]
[63]
Principe, S. Thermo-plasmonic lab-on-fiber optrodes. Opt. Laser Technol., 2020, 132, 106502.
[http://dx.doi.org/10.1016/j.optlastec.2020.106502]
[64]
Aliberti, A.; Ricciardi, A.; Giaquinto, M.; Micco, A.; Bobeico, E.; La Ferrara, V.; Ruvo, M.; Cutolo, A.; Cusano, A. Microgel assisted lab-on-fiber optrode. Sci. Rep., 2017, 7(1), 14459.
[http://dx.doi.org/10.1038/s41598-017-14852-5] [PMID: 29089550]
[65]
Giaquinto, M. Cavity-enhanced lab-on-fiber technology: toward advanced biosensors and nano-opto-mechanical active devices. ACS Photonics, 2019, 6(12), 3271-3280.
[http://dx.doi.org/10.1021/acsphotonics.9b01287]
[66]
Giaquinto, M.; Micco, A.; Aliberti, A.; Bobeico, E.; La Ferrara, V.; Ruvo, M.; Ricciardi, A.; Cusano, A. Optimization strategies for responsivity control of microgel assisted lab-on-fiber optrodes. Sensors (Basel), 2018, 18(4), E1119.
[http://dx.doi.org/10.3390/s18041119] [PMID: 29642392]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy