Skip to main content
Log in

A Search for the Counterparts of Quiet-Sun Radio Transients in Extreme Ultraviolet Data

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

Nonthermal radio transients from the quiet Sun have been recently discovered and it has been hypothesized using rough calculations that they might be important for coronal heating. It is well realized that energy calculations using coherent emissions are often subject to poorly constrained parameters and hence have large uncertainties. However, energy estimates using observations in the extreme ultraviolet (EUV) and soft X-ray bands are routinely done and the techniques are pretty well established. This work presents the first attempt to identify the EUV counterparts of these radio transients and then use them to estimate the energy deposited into the corona during the event. I show that the group of radio transients studied here is associated with a brightening observed in the EUV waveband and is produced by an energy release of \(\approx 10^{25}\) ergs. The fact that the flux density of the radio transient is only \(\approx 2\) mSFU suggests that it might be possible to do large statistical studies in the future for understanding the relationship between these radio transients and other EUV and X-ray counterparts, as well as for understanding their importance in coronal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

Similar content being viewed by others

Notes

  1. https://www.solarmonitor.org/?date=20171127.

  2. See https://docs.python.org/2/index.html.

  3. See http://matplotlib.org/.

  4. See http://docs.astropy.org/en/stable/.

  5. See https://docs.scipy.org/doc/.

References

  • Benz, A.O., Krucker, S.: 2002, Energy distribution of microevents in the quiet solar corona. Astrophys. J. 568(1), 413. DOI. ADS.

    Article  ADS  Google Scholar 

  • Berghmans, D., Clette, F., Moses, D.: 1998, Quiet Sun EUV transient brightenings and turbulence. A panoramic view by EIT on board SOHO. Astron. Astrophys. 336, 1039. ADS.

    ADS  Google Scholar 

  • Berghmans, D., Auchère, F., Long, D.M., Soubrié, E., Zhukov, A.N., Mierla, M., Schühle, U., Antolin, P., Parenti, S., Harra, L., Podladchikova, O., Aznar Cuadrado, R., Buchlin, É., Dolla, L., Verbeeck, C., Gissot, S., Teriaca, L., Haberreiter, M., Katsiyannis, A.C., Rodriguez, L., Kraaikamp, E., Smith, P.J., Stegen, K., Rochus, P., Halain, J.P., Jacques, L., Thompson, W.T., Inhester, B.: 2021, Extreme UV quiet Sun brightenings observed by Solar Orbiter/EUI. arXiv e-prints, arXiv. ADS.

  • Boerner, P., Edwards, C., Lemen, J., Rausch, A., Schrijver, C., Shine, R., Shing, L., Stern, R., Tarbell, T., Title, A., Wolfson, C.J., Soufli, R., Spiller, E., Gullikson, E., McKenzie, D., Windt, D., Golub, L., Podgorski, W., Testa, P., Weber, M.: 2012, Initial calibration of the Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO). Solar Phys. 275(1-2), 41. DOI. ADS.

    Article  ADS  Google Scholar 

  • Chen, Y., Przybylski, D., Peter, H., Tian, H., Auchère, F., Berghmans, D.: 2021, Transient small-scale brightenings in the quiet solar corona: a model for campfires observed with Solar Orbiter. arXiv e-prints, arXiv. ADS.

  • Chitta, L.P., Peter, H., Young, P.R.: 2021, Extreme-ultraviolet bursts and nanoflares in the quiet-Sun transition region and corona. Astron. Astrophys. 647, A159. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2012, Differential emission measures from the regularized inversion of Hinode and SDO data. Astron. Astrophys. 539, A146. DOI. ADS.

    Article  ADS  Google Scholar 

  • Hannah, I.G., Kontar, E.P.: 2013, Multi-thermal dynamics and energetics of a coronal mass ejection in the low solar atmosphere. Astron. Astrophys. 553, A10. DOI. ADS.

    Article  ADS  Google Scholar 

  • Harrison, R.A.: 1997, EUV blinkers: the significance of variations in the extreme ultraviolet quiet Sun. Solar Phys. 175(2), 467. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kontar, E.P., Chen, X., Chrysaphi, N., Jeffrey, N.L.S., Emslie, A.G., Krupar, V., Maksimovic, M., Gordovskyy, M., Browning, P.K.: 2019, Anisotropic radio-wave scattering and the interpretation of solar radio emission observations. Astrophys. J. 884(2), 122. DOI. ADS.

    Article  ADS  Google Scholar 

  • Krucker, S., Benz, A.O.: 1998, Energy distribution of heating processes in the quiet solar corona. Astrophys. J. Lett. 501(2), L213. DOI. ADS.

    Article  ADS  Google Scholar 

  • Kuhar, M., Krucker, S., Glesener, L., Hannah, I.G., Grefenstette, B.W., Smith, D.M., Hudson, H.S., White, S.M.: 2018, NuSTAR detection of X-ray heating events in the quiet Sun. Astrophys. J. Lett. 856(2), L32. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mercier, C., Trottet, G.: 1997, Coronal radio bursts: a signature of nanoflares? Astrophys. J. Lett. 474(1), L65. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mohan, A.: 2021, Discovery of correlated evolution in solar noise storm source parameters: insights on magnetic field dynamics during a microflare. Astrophys. J. Lett. 909(1), L1. DOI. ADS.

    Article  ADS  MathSciNet  Google Scholar 

  • Mohan, A., McCauley, P.I., Oberoi, D., Mastrano, A.: 2019a, A weak coronal heating event associated with periodic particle acceleration episodes. Astrophys. J. 883(1), 45. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mohan, A., Mondal, S., Oberoi, D., Lonsdale, C.J.: 2019b, Evidence for super-Alfvénic oscillations in Solar type III radio burst sources. Astrophys. J. 875(2), 98. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mondal, S., Oberoi, D.: 2021, Insights from snapshot spectroscopic radio observations of a weak Type I noise storm. arXiv e-prints, arXiv. ADS.

  • Mondal, S., Oberoi, D., Mohan, A.: 2020, First radio evidence for impulsive heating contribution to the quiet solar corona. Astrophys. J. Lett. 895(2), L39. DOI. ADS.

    Article  ADS  Google Scholar 

  • Mondal, S., Mohan, A., Oberoi, D., Morgan, J.S., Benkevitch, L., Lonsdale, C.J., Crowley, M., Cairns, I.H.: 2019, Unsupervised generation of high dynamic range solar images: a novel algorithm for self-calibration of interferometry data. Astrophys. J. 875(2), 97. DOI. ADS.

    Article  ADS  Google Scholar 

  • Ramesh, R., Sasikumar Raja, K., Kathiravan, C., Narayanan, A.S.: 2013, Low-frequency radio observations of picoflare category energy releases in the solar atmosphere. Astrophys. J. 762(2), 89. DOI. ADS.

    Article  ADS  Google Scholar 

  • Rutten, R.J.: 2020, SolO campfires in SDO images. arXiv e-prints, arXiv. ADS.

  • Subramanian, P., Becker, P.A.: 2004, Noise-storm continua: power estimates for electron acceleration. Solar Phys. 225(1), 91. DOI. ADS.

    Article  ADS  Google Scholar 

  • Wild, J.P., Smerd, S.F., Weiss, A.A.: 1963, Solar bursts. Annu. Rev. Astron. Astrophys. 1, 291. DOI. ADS.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This scientific work makes use of the Murchison Radio-astronomy Observatory, operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO). I acknowledge the Wajarri Yamatji people as the traditional owners of the observatory site. Support for the operation of the MWA is provided by the Australian Government through the National Collaborative Research Infrastructure Strategy (NCRIS), under a contract to Curtin University administered by Astronomy Australia Limited. I gratefully acknowledge Divya Oberoi (NCRA-TIFR) for coming up with the acronym WINQSE. I acknowledge the Pawsey Supercomputing Centre, which is supported by the Western Australian and Australian Governments. I acknowledge support of the Department of Atomic Energy, Government of India, under the project no. 12-R&D-TFR-5.02-0700. The SDO is a National Aeronautics and Space Administration (NASA) spacecraft, and I acknowledge the AIA science team for providing open access to data and software. This research has also made use of NASA’s Astrophysics Data System (ADS). I thank the developers of Python 2.7Footnote 2 and the various associated packages, especially Matplotlib,Footnote 3 Astropy,Footnote 4 and NumPy.Footnote 5

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Mondal.

Ethics declarations

Disclosure of Potential Conflicts of Interest

The author declares that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mondal, S. A Search for the Counterparts of Quiet-Sun Radio Transients in Extreme Ultraviolet Data. Sol Phys 296, 131 (2021). https://doi.org/10.1007/s11207-021-01877-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11207-021-01877-3

Keywords

Navigation