Skip to main content
Log in

Combination of ARE and HRE cis-Regulatory Elements Elevates the Activity of Tumor-Specific hTERT Promoter

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Tumor-specific promoters and cis-regulatory genetic elements are used for transcriptional control of therapeutic transgene expression in cancer gene therapy. HRE (hypoxia response element) and ARE (antioxidant response element) cis-regulatory elements are targets for HIF1 and Nrf2 transcriptional factors, respectively, and mediate activation of gene transcription in a response to hypoxia and oxidative stress, characteristic of most solid tumors. Due to these features HREs and AREs are used in genetic constructs for cancer gene therapy to provide tumor-specific therapeutic transgene expression or replication of oncolytic adenoviruses. In this work on the basis of the tumor-specific promoter hTERT we have constructed hybrid promoters carrying combinations of HRE and ARE. We showed that upon imitation of hypoxia in human lung cancer cell lines the activity of the hybrid promoter HRE-ARE-hTERT is substantially higher compared to promoters carrying only ARE or HRE. Using in vitro suicide cancer gene therapy with the CD: UPRT/5-FC (cytosine deaminase: uracil phosphoribosyl transferase/5-fluorocytosine) enzyme-prodrug system as a model we showed an enhancement of the cytotoxic effect on human lung cancer cells upon imitation of hypoxia when cytosine deaminase: uracil phosphoribosyl transferase was expressed under the control of the HRE-ARE-hTERT promoter compared to HRE-hTERT and ARE-hTERT promoters. The novel hybrid promoter HRE-ARE-hTERT could be used for transcriptional targeting of therapeutic transgene expression or oncolytic adenovirus replication upon development of novel anti-cancer gene therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Blaese R.M., Culver K.W., Miller A.D., Carter C.S., Fleisher T., Clerici M., Shearer G., Chang L., Chiang Y., Tolstoshev P., Greenblatt J.J., Rosenberg S.A., Klein H., Berger M., Mullen C.A., et al. 1995. T lymphocyte-directed gene therapy for ADA-SCID: Initial trial results after 4 years. Science. 270, 475–480.

    Article  CAS  Google Scholar 

  2. Anguela X.M., High K.A. 2019. Entering the modern era of gene therapy. Annu. Rev. Med. 70, 273–288.

    Article  CAS  Google Scholar 

  3. Pahle J., Walther W. 2016. Vectors and strategies for nonviral cancer gene therapy. Expert. Opin. Biol. Ther. 16, 443–461.

    Article  CAS  Google Scholar 

  4. Das S.K., Menezes M.E., Bhatia S., Wang X.Y., Emdad L., Sarkar D., Fisher P.B. 2015. Gene therapies for cancer: Strategies, challenges and successes. J. Cell. Physiol. 230, 259–271.

    Article  CAS  Google Scholar 

  5. Malekshah O.M., Chen X., Nomani A., Sarkar S., Hatefi A. 2016. Enzyme/prodrug systems for cancer gene therapy. Curr. Pharmacol. Rep. 2, 299–308.

    Article  CAS  Google Scholar 

  6. Dorer D.E., Nettelbeck D.M. 2009. Targeting cancer by transcriptional control in cancer gene therapy and viral oncolysis. Adv. Drug Deliv. Rev. 61, 554–571.

    Article  CAS  Google Scholar 

  7. Fujiwara T., Urata Y., Tanaka N. 2007. Telomerase-specific oncolytic virotherapy for human cancer with the hTERT promoter. Curr. Cancer Drug Targets 7, 191–201.

    Article  CAS  Google Scholar 

  8. Narayanan D., Ma S., Özcelik D. 2020. Targeting the redox landscape in cancer therapy. Cancers. 12.

  9. Purohit V., Simeone D.M., Lyssiotis C.A. 2019. Metabolic regulation of redox balance in cancer. Cancers. 11.

  10. Leinonen H.M., Ruotsalainen A.K., Maatta A.M., Laitinen H.M., Kuosmanen S.M., Kansanen E., Pikkarainen J.T., Lappalainen J.P., Samaranayake H., Lesch H.P., Kaikkonen M.U., Yla-Herttuala S., Levonen A.L. 2012. Oxidative stress-regulated lentiviral TK/GCV gene therapy for lung cancer treatment. Cancer Res. 72, 6227–6235.

    Article  CAS  Google Scholar 

  11. Kalinichenko S.V., Shepelev M.V., Vikhreva P.N., Korobko I.V. 2017. A novel hybrid promoter ARE-hTERT for cancer gene therapy. Acta Naturae. 9, 66–73.

    Article  CAS  Google Scholar 

  12. Javan B., Shahbazi M. 2017. Hypoxia-inducible tumour-specific promoters as a dual-targeting transcriptional regulation system for cancer gene therapy. Ecancermedicalscience 11, 751. https://doi.org/10.3332/ecancer.2017.751

    Article  PubMed  PubMed Central  Google Scholar 

  13. Semenza G.L. 2002. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8, 02317–02311.

    Article  Google Scholar 

  14. Dachs G.U., Patterson A.V., Firth J.D., Ratcliffe P.J., Townsend K.M., Stratford I.J., Harris A.L. 1997. Targeting gene expression to hypoxic tumor cells. Nat. Med. 3, 515–520.

    Article  CAS  Google Scholar 

  15. Hsiao H.T., Xing L., Deng X., Sun X., Ling C.C., Li G.C. 2014. Hypoxia-targeted triple suicide gene therapy radiosensitizes human colorectal cancer cells. Oncol. Rep. 32, 723–729.

    Article  Google Scholar 

  16. Gomes E.M., Rodrigues M.S., Phadke A.P., Butcher L.D., Starling C., Chen S., Chang D., Hernandez-Alcoceba R., Newman J.T., Stone M.J., Tong A.W. 2009. Antitumor activity of an oncolytic adenoviral-CD40 ligand (CD154) transgene construct in human breast cancer cells. Clin. Cancer Res. 15, 1317–1325.

    Article  CAS  Google Scholar 

  17. Hernandez-Alcoceba R., Pihalja M., Qian D., Clarke M.F. 2002. New oncolytic adenoviruses with hypoxia- and estrogen receptor-regulated replication. Hum. Gene Ther. 13, 1737–1750.

    Article  CAS  Google Scholar 

  18. Gao Y., Zhu Y., Huang X., Ai K., Zheng Q., Yuan Z. 2015. Gene therapy targeting hepatocellular carcinoma by a dual-regulated oncolytic adenovirus harboring the focal adhesion kinase shRNA. Int. J. Oncol. 47, 668–678.

    Article  CAS  Google Scholar 

  19. Zhu W., Zhang H., Shi Y., Song M., Zhu B., Wei L. 2013. Oncolytic adenovirus encoding tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits the growth and metastasis of triple-negative breast cancer. Cancer Biol. Ther. 14, 1016–1023.

    Article  CAS  Google Scholar 

  20. Wang X., Su C., Cao H., Li K., Chen J., Jiang L., Zhang Q., Wu X., Jia X., Liu Y., Wang W., Liu X., Wu M., Qian Q. 2008. A novel triple-regulated oncolytic adenovirus carrying p53 gene exerts potent antitumor efficacy on common human solid cancers. Mol. Cancer Ther. 7, 1598–1603.

    Article  CAS  Google Scholar 

  21. Xie M., Niu J.H., Chang Y., Qian Q.J., Wu H.P., Li L.F., Zhang Y., Li J.L., Huang X.J., Ruan G.R. 2009. A novel triple-regulated oncolytic adenovirus carrying PDCD5 gene exerts potent antitumor efficacy on common human leukemic cell lines. Apoptosis. 14, 1086–1094.

    Article  CAS  Google Scholar 

  22. Zhao H.C., Zhang Q., Yang Y., Lu M.Q., Li H., Xu C., Chen G.H. 2007. p53-expressing conditionally replicative adenovirus CNHK500-p53 against hepatocellular carcinoma in vitro. World J. Gastroenterol. 13, 683–691.

    Article  CAS  Google Scholar 

  23. Shepelev M.V., Kopantzev E.P., Vinogradova T.V., Sverdlov E.D., Korobko I.V. 2016. hTERT and BIRC5 gene promoters for cancer gene therapy: A comparative study. Oncol. Lett. 12, 1204–1210.

    Article  CAS  Google Scholar 

  24. Shepelev M.V., Korobko E.V., Georgiev G.P., Sverdlov E.D., Korobko I.V. 2011. Application of mRNA regulatory regions to improve tumor specificity of transgene expression. Cancer Gene Ther. 18, 682–684.

    Article  CAS  Google Scholar 

  25. Marignol L., Lawler M., Coffey M., Hollywood D. 2005. Achieving hypoxia-inducible gene expression in tumors. Cancer Biol. Ther. 4, 359–364.

    Article  CAS  Google Scholar 

  26. Gao S., Zhou J., Zhao Y., Toselli P., Li W. 2013. Hypoxia-response element (HRE)-directed transcriptional regulation of the rat lysyl oxidase gene in response to cobalt and cadmium. Toxicol. Sci. 132, 379–389.

    Article  CAS  Google Scholar 

  27. Cowen R.L., Williams K.J., Chinje E.C., Jaffar M., Sheppard F.C., Telfer B.A., Wind N.S., Stratford I.J. 2004. Hypoxia targeted gene therapy to increase the efficacy of tirapazamine as an adjuvant to radiotherapy: Reversing tumor radioresistance and effecting cure. Cancer Res. 64, 1396–1402.

    Article  CAS  Google Scholar 

  28. Munoz-Sanchez J., Chanez-Cardenas M.E. 2019. The use of cobalt chloride as a chemical hypoxia model. J. Appl. Toxicol. 39, 556–570.

    Article  CAS  Google Scholar 

  29. Gu J., Fang B. 2003. Telomerase promoter-driven cancer gene therapy. Cancer Biol. Ther. 2, S64–70.

    Article  CAS  Google Scholar 

  30. Hurttila H., Koponen J.K., Kansanen E., Jyrkkänen H.K., Kivelä A., Kylätie R., Ylä-Herttuala S., Levonen A.L. 2008. Oxidative stress-inducible lentiviral vectors for gene therapy. Gene Ther. 15, 1271–1279.

    Article  CAS  Google Scholar 

  31. Nishi H., Nakada T., Kyo S., Inoue M., Shay J.W., Isaka K. 2004. Hypoxia-inducible factor 1 mediates upregulation of telomerase (hTERT). Mol. Cell. Biol. 24, 6076–6083.

    Article  CAS  Google Scholar 

  32. Yuan X., Larsson C., Xu D. 2019. Mechanisms underlying the activation of TERT transcription and telomerase activity in human cancer: Old actors and new players. Oncogene. 38, 6172–6183.

    Article  CAS  Google Scholar 

  33. Cheng M.Y., Lee I.P., Jin M., Sun G., Zhao H., Steinberg G.K., Sapolsky R.M. 2011. An insult-inducible vector system activated by hypoxia and oxidative stress for neuronal gene therapy. Transl. Stroke Res. 2, 92–100.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work used the infrastructure of the Core Facility Center of the Institute of Gene Biology, Russian Academy of Sciences.

Funding

This work was supported by grant no. 075-15-2019-1661 of the Ministry of Science and Higher Education of the Russian Federation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Shepelev.

Ethics declarations

The work does not use animals or biological materials obtained from humans. The authors declare no conflict of interest.

Additional information

Abbreviations: ARE, antioxidant response element; HRE, hypoxia response element; hTERT, human telomerase reverse transcriptase; CD:UPRT, cytosine deaminase: uracil phosphoribosyl transferase fusion protein; 5FC, 5-fluorocytosine; RLU, relative luminescence units; SD, standard deviation; 3′‑UTR, 3′-untranslated region.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinichenko, S.V., Korobko, I.V. & Shepelev, M.V. Combination of ARE and HRE cis-Regulatory Elements Elevates the Activity of Tumor-Specific hTERT Promoter. Mol Biol 55, 555–564 (2021). https://doi.org/10.1134/S0026893321030055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321030055

Keywords:

Navigation