Skip to main content
Log in

Identification of Novel Differentially Expressing Long Non-Coding RNAs with Oncogenic Potential

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Recently, a wealth of data have been accumulating on the role of long non-coding RNAs (lncRNAs) in the fine-tuning of mRNA expression. Four new lncRNAs, namely, TMEM92-AS1, FAM222A-AS, TXLNB, and lnc-CCL28, were identified as differentially expressed in ovarian tumors using deep machine learning. The levels of lnc-CCL28 transcripts in both tumors and normal tissue samples were sufficient for further analysis by RT-PCR. In addition, the promising ovarian cancer biomarkers, lncRNAs LINC00152, NEAT1 and SNHG17 were added to RT-PCR analysis. For the first time, an increase in the level of lnc-CCL28 and SNHG17 lncRNAs was found in ovarian tumors, and the overexpression of LINC00152 and NEAT1 was confirmed. It seems that lnc-CCL28 is involved in carcinogenesis and, in particular, in ovarian cancer progression. Overexpression of LINC00152 and lnc-CCL28 was significantly associated with the later stages and metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Kung J.T.Y., Colognori D., Lee J.T. 2013. Long noncoding RNAs: Past, present, and future. Genetics. 193 (3), 651–669.

    Article  CAS  Google Scholar 

  2. Brannan C.I., Dees E.C., Ingram R.S., Tilghman S.M. 1990. The product of the H19 gene may function as an RNA. Mol. Cell. Biol. 10 (1), 28–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Wunderlich Z., Mirny L.A. 2009. Different gene regulation strategies revealed by analysis of binding motifs. Trends Genet. 25 (10), 434–440.

    Article  CAS  Google Scholar 

  4. Yao R.-W., Wang Y., Chen L.-L. 2019. Cellular functions of long noncoding RNAs. Nat. Cell Biol. 21 (5), 542–551.

    Article  CAS  Google Scholar 

  5. Fang Y., Fullwood M.J. 2016. Roles, functions, and mechanisms of long non-coding RNAs in cancer. Genomics Proteomics Bioinformatics. 14 (1), 42–54.

    Article  Google Scholar 

  6. Mercer T.R., Dinger M.E., Mattick J.S. 2009. Long non-coding RNAs: Insights into functions. Nat. Rev. Genet. 10 (3), 155–159.

    Article  CAS  Google Scholar 

  7. López-Urrutia E., Bustamante Montes L.P., Ladrón de Guevara Cervantes D., Pérez-Plasencia C., Campos-Parra A.D. 2019. Crosstalk between long non-coding RNAs, micro-RNAs and mRNAs: Deciphering molecular mechanisms of master regulators in cancer. Front. Oncol. 9, 669.

    Article  Google Scholar 

  8. Loginov V.I., Pronina I.V., Burdennyy A.M., Filippova E.A., Kazubskaya T.P., Kushlinsky D.N., Utkin D.O., Khodyrev D.S., Kushlinskii N.E., Dmitriev A.A., Braga E.A. 2018. Novel miRNA genes deregulated by aberrant methylation in ovarian carcinoma are involved in metastasis. Gene. 662, 28–36.

    Article  CAS  Google Scholar 

  9. Filippova E.A., Loginov V.I., Burdennyi A.M.,Braga E.A., Pronina I.V., Kazubskaya T.P., Kushlinskii D.N., Utkin D.O., Fridman M.V., Khodyrev D.S., Kushlinskii N.E. 2019. hypermethylated genes of microrna in ovarian carcinoma: Metastasis prediction marker systems. Bull. Exp. Biol. Med. 167 (1), 79–83.

    Article  CAS  Google Scholar 

  10. Zhou J., Zhi X., Wang L., Wang W., Li Z., Tang J., Wang J., Zhang Q., Xu Z. 2016. Erratum to: Linc00152 promotes proliferation in gastric cancer through the EGFR-dependent pathway. J. Exp. Clin. Cancer Res. 35, 30.

    Article  Google Scholar 

  11. Seo D., Kim D., Kim W. 2019. Long non-coding RNA linc00152 acting as a promising oncogene in cancer progression. Genomics Inform. 17 (4), e36.

    Article  Google Scholar 

  12. Cai Q., Wang Z.-Q., Wang S.-H., Li C., Zhu Z.-G., Quan Z.-W., Zhang W.-J. 2016. Upregulation of long non-coding RNA LINC00152 by SP1 contributes to gallbladder cancer cell growth and tumor metastasis via PI3K/AKT pathway. Am. J. Transl. Res. 8 (10), 4068–4081.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Shigemasa K., Katoh O., Shiroyama Y., Mihara S., Mukai K., Nagai N., Ohama K. 2002. Increased MCL-1 expression is associated with poor prognosis in ovarian carcinomas. Jpn. J. Cancer Res. Gann. 93 (5), 542–550.

    Article  CAS  Google Scholar 

  14. Chakravarty D., Sboner A., Nair S.S., Giannopoulou E., Li R., Hennig S., Mosquera J.M., Pauwels J., Park K., Kossai M., MacDonald T.Y., Fontugne J., Erho N., Vergara I.A., Ghadessi M., Davicioni E., et al. 2014. The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat. Commun. 5, 5383.

    Article  CAS  Google Scholar 

  15. Lebedeva S., Jens M., Theil K., Schwanhäusser B., Selbach M., Landthaler M., Rajewsky N. 2011. Transcriptome-wide analysis of regulatory interactions of the RNA-binding protein HuR. Mol. Cell. 43 (3), 340–352.

    Article  CAS  Google Scholar 

  16. Mitsunari K., Miyata Y., Asai A., Matsuo T., Shida Y., Hakariya T., Sakai H. 2016. Human antigen R is positively associated with malignant aggressiveness via upregulation of cell proliferation, migration, and vascular endothelial growth factors and cyclooxygenase-2 in prostate cancer. Transl. Res. 175, 116–128.

    Article  CAS  Google Scholar 

  17. Du Y., Wei N., Hong J., Pan W. 2020. Long non-coding RNASNHG17 promotes the progression of breast cancer by sponging miR-124-3p. Cancer Cell Int. 20, 40.

    Article  CAS  Google Scholar 

  18. Smyth G.K. 2005. limma: Linear Models for Microarray Data. In: Bioinformatics and Computational Biology Solutions Using R and Bioconductor. Statistics for Biology and Health. Eds. Gentleman R., Carey V.J., Huber W., Irizarry R.A., Dudoit S. New York: Springer, pp. 397–420. https://doi.org/10.1007/0-387-29362-0_23

  19. Pearson K.F.R.S. 1901. LIII. On lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2 (11), 559–572. https://doi.org/10.1080/14786440109462720

    Article  Google Scholar 

  20. Hinton G.E., Roweis S. 2002. Stochastic neighbor embedding. Adv. Neural Inf. Process. Syst. 15, 857–864.

    Google Scholar 

  21. Chen T., Guestrin C. 2016. XGBoost: A scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. https://doi.org/10.1145/2939672.2939785

  22. UICC. 1987. TNM Classification of Malignant Tumours, 4th ed. Eds. Hermanek P., Sobin L.H. Berlin: Springer-Verlag.

  23. WHO. 2014. WHO Classification of Tumours of Female Reproductive Organs, 4th ed. Eds. Kurman R., Carcangiu M.L., Herrington C.S., Young R.H. Lyon: IARC Press, vol. 6.

  24. Pronina I.V., Loginov V.I., Khodyrev D.S., Kazubskaya T.P., Braga E.A. 2012. RASSF1A expression level in primary epithelial tumors of various locations. Mol. Biol. 46, 236–243. https://doi.org/10.1134/S0026893312010189

  25. Chai Y., Liu J., Zhang Z., Liu L. 2016. HuR-regulated lncRNA NEAT1 stability in tumorigenesis and progression of ovarian cancer. Cancer Med. 5 (7), 1588–1598.

    Article  CAS  Google Scholar 

  26. Gong J., Zhang J.-P., Li B., Zeng C., You K., Chen M.-X., Yuan Y., Zhuang S.-M. 2013. MicroRNA-125b promotes apoptosis by regulating the expression of Mcl-1, Bcl-w and IL-6R. Oncogene. 32 (25), 3071–3079.

    Article  CAS  Google Scholar 

  27. Chen D., Si W., Shen J., Du C., Lou W., Bao C., Zheng H., Pan J., Zhong G., Xu L., Fu P., Fan W. 2018. miR-27b-3p inhibits proliferation and potentially reverses multi-chemoresistance by targeting CBLB/GRB2 in breast cancer cells. Cell Death Dis. 9 (2), 188. https://doi.org/10.1038/s41419-017-0211-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (grant no. 20-15-00368).

Author information

Authors and Affiliations

Authors

Contributions

O.I.B. and I.V.P. made equal contributions.

Corresponding author

Correspondence to O. I. Brovkina.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in this work are in accordance with the ethical standards of the institutional committee on research ethics and the 1964 Declaration of Helsinki and its subsequent amendments or comparable standards of ethics. Written informed consent was obtained from all patients.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brovkina, O.I., Pronina, I.V., Uroshlev, L.A. et al. Identification of Novel Differentially Expressing Long Non-Coding RNAs with Oncogenic Potential. Mol Biol 55, 548–554 (2021). https://doi.org/10.1134/S0026893321020175

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020175

Keywords:

Navigation