Skip to main content
Log in

Decrease in the Activity of Striatal-Enriched Protein-Tyrosine-Phosphatase (STEP) in the Brain of Danio rerio Treated with p-Chlorophenylalanine and Pargyline

  • MOLECULAR CELL BIOLOGY
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract—

Fundamental neurophysiological processes are often studied using Danio rerio fish as a model. A selective inhibitor of striatal-enriched protein tyrosine phosphatase (STEP) reduces serotonin metabolism in the D. rerio brain. Both STEP and serotonin are involved in the development of neurodegenerative behavioral disorders. Reduction or elevation of the serotonin level in the brain of mice caused by the administration of p-chlorophenylalanine or pargyline, respectively, results in a decrease in the level of рtpn5 mRNA in the striatum, рtpn5 being the gene encoding STEP. However, it has not been established whether this occurs in other organisms. We studied the effect of inhibitors of synthesis (p-chlorophenylalanine) and degradation (pargyline) of serotonin on the expression of the ptpn5 gene and the activity of STEP in the brain of D. rerio. The fish were placed in water containing p-chlorophenylalanine (2 mg/L) or pargyline (0.5 mg/L) for 72 hours, and control subjects were kept in aquarium water. The p-chlorophenylalanine treatment decreased the serotonin level in the brain fourfold, whereas pargyline increased the level of this transmitter sixfold. Both p-chlorophenylalanine and pargyline decrease STEP activity in the D. rerio brain, without affecting the level of the рtpn5 mRNA gene. Thus, interaction between STEP and the serotonin system is observed in both mammals and fish, which indicates the similarity of the regulation processes in vertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Kalueff A.V., Stewart A.M., Gerlai R. 2014. Zebrafish as an emerging model for studying complex brain disorders. Trends Pharmacol. Sci. 35, 63–75.

    Article  CAS  Google Scholar 

  2. Stewart A.M., Braubach O., Spitsbergen J., Gerlai R., Kalueff A.V. 2014. Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci. 37, 264–278.

    Article  CAS  Google Scholar 

  3. Goebel-Goody S.M., Baum M., Paspalas C.D., Fernandez S.M., Carty N.C., Kurup P., Lombroso P.J. 2012. Therapeutic implications for striatal-enriched protein tyrosine phosphatase (STEP) in neuropsychiatric disorders. Pharmacol. Rev. 64, 65–87.

    Article  CAS  Google Scholar 

  4. Nguyen T.H., Liu J., Lombroso P.J. 2002. Striatal enriched phosphatase 61 dephosphorylates Fyn at phosphotyrosine 420. J. Biol. Chem. 277, 24274–24279.

    Article  CAS  Google Scholar 

  5. Xu J., Kurup P., Bartos J.A., Patriarchi T., Hell J.W., Lombroso P.J. 2012. Striatal-enriched protein-tyrosine phosphatase (STEP) regulates Pyk2 kinase activity. J. Biol. Chem. 287, 20942–20956.

    Article  CAS  Google Scholar 

  6. Kurup P., Zhang Y., Xu J., Venkitaramani D.V., Haroutunian V., Greengard P., Nairn A.C., Lombroso P.J. 2010. A beta-mediated NMDA receptor endocytosis in Alzheimer’s disease involves ubiquitination of the tyrosine phosphatase STEP61. J. Neurosci. 30, 5948–5957.

    Article  CAS  Google Scholar 

  7. Sinyakova N.A., Kulikova E.A., Englevskii N.A., Kulikov A.V.2017. Effects of fluoxetine and potential antidepressant 8-trifluoromethyl 1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (tc-2153) on behavior of Danio rerio fish in the novel tank test and brain content of biogenic amines and their metabolites. Bull. Exp. Biol. Med. 164 (5), 620–623.

    Article  Google Scholar 

  8. Kulikova E.A., Bazhenova E.Y., Popova N.K., Khomenko T.M., Volcho K.P., Salakhutdinov N.F., Kulikov A.V. 2015. Effect of acute administration of 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153) on biogenic amines metabolism in mouse brain. Lett. Drug Design Discov. 12, 833–836.

    Article  CAS  Google Scholar 

  9. Kulikov A.V., Tikhonova M.A., Kulikova E.A., Khomenko T.M., Korchagina D.V., Volcho K.P., Salakhutdinov N.F., Popova N.K.2011. Effect of a new potential psychotropic drug, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride, on the expression of serotonin-related genes in the mouse brain. Mol. Biol. (Moscow). 45, 251–257.

    Article  CAS  Google Scholar 

  10. Kulikova E.A., Khotskin N.V., Illarionova N.B., Sorokin I.E., Bazhenova E.Y., Kondaurova E.M., Volcho K.P., Khomenko T.M., Salakhutdinov N.F., Ponimaskin E., Naumenko V.S., Kulikov A.V. 2018. Inhibitor of striatal-enriched protein tyrosine phosphatase, 8-(trifluoromethyl)-1,2,3,4,5-benzopentathiepin-6-amine hydrochloride (TC-2153), produces antidepressant-like effect and decreases functional activity and protein level of 5-HT(2A) receptor in the brain. Neuroscience. 394, 220–231.

    Article  CAS  Google Scholar 

  11. Kulikov A.V., Gainetdinov R.R., Ponimaskin E., Kalueff A.V., Naumenko V.S., Popova N.K. 2018. Interplay between the key proteins of serotonin system in SSRI antidepressants efficacy. Expert Opin. Ther. Targets. 22, 319–330.

    Article  Google Scholar 

  12. Popova N.K., Naumenko V.S. 2019. Neuronal and behavioral plasticity: The role of serotonin and BDNF systems tandem. Expert Opin. Ther. Targets. 22, 227–239.

    Article  Google Scholar 

  13. Walther D.J., Peter J.U., Bashammakh S., Hörtnagl H., Voits M., Fink H., Bader M. 2003. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science. 299, 76.

    Article  CAS  Google Scholar 

  14. Popova N.K., Kulikov A.V. 2010. Targeting tryptophan hydroxylase 2 in affective disorder. Expert Opin. Ther. Targets. 14, 1259–1271.

    Article  CAS  Google Scholar 

  15. Kulikov A.V., Popova N.K. 2015. Tryptophan hydroxylase 2 in seasonal affective disorder: underestimated perspectives? Rev. Neurosci. 26, 679–690.

    Article  CAS  Google Scholar 

  16. Kulikova E.A., Kulikov A.V. 2019. Tryptophan hydroxylase 2 as a therapeutic target for psychiatric disorders: Focus on animal models. Expert Opin. Ther. Targets. 23, 655–667.

    Article  CAS  Google Scholar 

  17. Shih J.C., Thompson R.F. 1999. Monoamine oxidase in neuropsychiatry and behavior. Am. J. Hum. Genet. 65, 593–598.

    Article  CAS  Google Scholar 

  18. Allen D.L., Renner K.J., Luine V.N. 1993. Pargyline-induced increase in serotonin levels: Correlation with inhibition of lordosis in rats. Pharmacol. Biochem. Behav. 45, 837–841.

    Article  CAS  Google Scholar 

  19. Edmondson D.E., Mattevi A., Binda C., Li M., Hubálek F. 2004. Structure and mechanism of monoamine oxidase. Curr. Med. Chem. 11, 1983–1993.

    Article  CAS  Google Scholar 

  20. Kulikova E.A., Fursenko D.V., Bazhenova E.Yu., Kulikov A.V. 2020. Pargyline and p-chlorophenylalanine decrease expression of Ptpn5 encoding striatal-enriched protein tyrosine phosphatase (STEP) in the mouse striatum. Mol. Biol. (Moscow). 54, 274–280.

    Article  CAS  Google Scholar 

  21. Khotskin N.V., Plyusnina A.V., Kulikova E.A., Bazhenova E.Y., Fursenko D.V., Sorokin I.E., Kolotygin I., Mormede P., Terenina E.E., Shevelev O.B., Kulikov A.V. 2019. On association of the lethal yellow (AY) mutation in the agouti gene with the alterations in mouse brain and behavior. Behav. Brain Res. 359, 446–456.

    Article  CAS  Google Scholar 

  22. Kulikov A.V., Naumenko V.S., Voronova I.P., Tikhonova M.A., Popova N.K. 2005. Quantitative RT-PCR assay of 5-HT1A and 5-HT2A serotonin receptor mRNAs using genomic DNA as an external standard. J. Neurosci. Methods. 141, 97‒101.

    Article  CAS  Google Scholar 

  23. Paul S., Snyder G.L., Yokakura H., Picciotto M.R., Nairn A.C., Lombroso P.J. 2000. The Dopamine/D1 receptor mediates the phosphorylation and inactivation of the protein tyrosine phosphatase STEP via a PKA-dependent pathway. J. Neurosci. 20, 5630–5638.

    Article  CAS  Google Scholar 

  24. Barnes N.M., Sharp T. 1999. A review of central 5-HT receptors and their function. Neuropharmacology. 38, 1083–1152.

    Article  CAS  Google Scholar 

  25. Pytliak M., Vargova V., Mechirova V., Felsoci M. 2011. Serotonin receptors—from molecular biology to clinical applications. Physiol. Res. 60, 15–25.

    Article  CAS  Google Scholar 

  26. Panula P., Chen Y.C., Priyadarshini M., Kudo H., Semenova S., Sundvik M., Sallinen V. 2010. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. 40, 46–57.

    Article  CAS  Google Scholar 

  27. Gaspar P., Lillesaar C. 2012. Probing the diversity of serotonin neurons. Philos. Trans R. Soc. Lond. B. 67, 2382–2394.

    Article  Google Scholar 

  28. Borsini F. 1995. Role of the serotonergic system in the forced swimming test. Neurosci. Biobehav. Rev. 19, 377‒395.

    Article  CAS  Google Scholar 

  29. Stewart A.M., Cachat J., Gaikwad S., Robinson K.S., Gebhardt M., Kalueff A.V. 2013. Perspectives on experimental models of serotonin syndrome in zebrafish. Neurochem. Int. 62, 893–902.

    Article  CAS  Google Scholar 

  30. Maximino C., Puty B., Benzecry R., Araújo J., Lima M.G., de Jesus Oliveira Batista E., Renata de Matos Oliveira K., Crespo-Lopez M.E., Herculano A.M. 2013. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models. Neuropharmacology. 71, 83–97.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors are grateful to the fellows of the laboratory of physiologically active substances N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry SB RAS, for kindly granting the TC-2153 substance.

Funding

The study was supported by Budgetary project no. 0259-2021-0015.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kulikova.

Ethics declarations

Statement on the welfare of animals. All procedures performed in this work correspond to the ethical standards of the institutional committee for research ethics and the Helsinki Declaration of 1964 and its following changes or comparable ethical norms.

Conflict of interests. The authors declare no conflict of interests.

Additional information

Abbreviations: 5-HT, serotonin; ptpn5, STEP protein-encoding gene; pol2e, DNA-dependent RNA polymerase; STEP, Striatal-Enriched protein tyrosine Phosphatase; MAO, monoamine oxidase; TPH2, tryptophanhydroxilase 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikova, E.A., Fursenko, D.V., Bazhenova, E.Y. et al. Decrease in the Activity of Striatal-Enriched Protein-Tyrosine-Phosphatase (STEP) in the Brain of Danio rerio Treated with p-Chlorophenylalanine and Pargyline. Mol Biol 55, 604–609 (2021). https://doi.org/10.1134/S0026893321020254

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893321020254

Keywords:

Navigation