Skip to main content

Advertisement

Log in

The Ramgarh Terrestrial Impact Structure in Rajasthan State: a ‘Geoheritage Site and Geopark’ Candidate from North-Central India

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

A nearly complete, 3.5–4 km diameter, circular topographic high structure occurs as a solitary geomorphic high landform at Ramgarh village in Rajasthan State in north-central India, amidst vast agricultural plains. Known as the Ramgarh (impact) structure, this landform was first noticed in 1869. Although the possibility of its meteorite impact origin was mentioned as early as 1972, it was described as a tectonic “dome structure,” in the absence of any clinching evidence. Geological and geophysical investigations carried out during the last decades have pointed out features typical of a terrestrial meteorite impact, such as a well-preserved circular shape with an uplifted central depression, steep inner slopes of the ridge compared to outer slopes, intense brecciation, fracturing, and faulting, and most important, identification of planar deformation features in quartz, diagnostic of shock metamorphism. Therefore, the structure has recently been recognized as a confirmed “meteorite impact structure” from India and listed in the global database on impact structures. The central depression of the structure is also the site for a tenth century Khajuraho-style temple complex. Besides, there are two cave temples on the inner slope of the eastern rim of the structure, a cultural cum pilgrimage center. The ruins of a fort at the southern outer slope of the structure represent yet another object of archeological/historic interest. The two water bodies in the central depression, filled with the rainwater drained from the surrounding slopes, are the abode for several species of migratory birds. Thus, the “impact structure” provides scientific, archeological, historical, cultural, and biodiversity features of common interest in a unified geographic domain, making an appropriate case for consideration and accreditation as “geopark.” Although the structure is listed amongst 34 geoheritage sites/geological monuments by the Geological Survey of India, the efforts have not been translated into any action on the ground in terms of developing it as a geopark. In this contribution, we provide geological and geomorphological characteristics of this structure, and in conjunction with the other wide-ranging aspects, propose recognition of this well-preserved “meteorite impact structure” as a “geoheritage site/geopark.”

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Provided in the paper.

References

  • Agarwal A, Kumar S, Joshi G, Agarwal KK (2020) Evidence for shock provides insight into the formation of the central elevated area in the Dhala impact structure, India. Meteor Planet Sci 55:2772–2779

    Article  Google Scholar 

  • Ahmed N, Bhardwaj BD, Sajid HA, Hasnain I (1974) Ramgarh meteorite crater. Current Sci 43:598

    Google Scholar 

  • Auden JB (1933) Vindhyan sedimentation in the Son Valley, Mirzapur district. Geol Surv India Mem 62:141–250

    Google Scholar 

  • Balasundaram MS, Dube A (1973) The Ramgarh structure, India. Nature 242:40. https://doi.org/10.1038/242040a0

    Article  Google Scholar 

  • Banerjee A, Banerjee DM (2010) Modal analysis and geochemistry of two sandstones of the Bhander Group (Late Neoproterozoic) in parts of the central Indian Vindhyan basin and their bearing on the provenance and tectonics. Jour Earth Syst Sci 119:825–839

    Article  Google Scholar 

  • Banerjee S, Dutta S, Paikaray S, Mann U (2006) Stratigraphy, sedimentology and bulk organic geochemistry of black shales from the Proterozoic Vindhyan Supergroup (central India). Jour Earth Syst Sci 115:37–47

    Article  Google Scholar 

  • Bhardwaj BD (1970) Upper Vindhyan sedimentation in the Kota - Rawatbhata area, Rajasthan (doctoral dissertation, Aligarh Muslim University)

  • Bhattacharya D, Joshi GB, Sharma R (2011) Uranium mineralisation associated with felsic volcanism at Mohar, Shivpuri district, Madhya Pradesh. Jour Geol Soc India 78:57–62. https://doi.org/10.1007/s12594-011-0067-7

    Article  Google Scholar 

  • Bhattacharyya A (1996) Recent advances in Vindhyan geology. Geol Soc India Mem 36:331

    Google Scholar 

  • Bhosale S, Chaskar K, Pandey DK, Lakhote A, Thakkar A, Chauhan G, Bhandari S, Thakkar MG (2021) Jurassic geodiversity and geomorphosite of Kanthkot area, Wagad, Kachchh, Western India. Int J Geoheritage Parks 9:51–68

    Article  Google Scholar 

  • Bose PK, Chakraborty PP (1994) Marine to fluvial transition: Proterozoic Upper Rewa Sandstone, Maihar, India. Sediment Geol 89:285–302

    Article  Google Scholar 

  • Bose PK, Sarkar S, Chakrabarty S, Banerjee S (2001) Overview of the Meso- to Neoproterozoic evolution of the Vindhyan Basin, central India. Sediment Geol 141–142:395–419

    Article  Google Scholar 

  • Bose PK, Sarkar S, Das NG, Banerjee S, Mandal A, Chakraborty N (2015) Proterozoic Vindhyan Basin: configuration and evolution. Geol. Soc. London Mem. 43:85–102

    Article  Google Scholar 

  • Brilha J (2015) Concept of geoconservation. In: Tiess G, Majumder T, Cameron P (eds) Encyclopedia of Mineral and Energy Policy. Springer-Verlag, Berlin Heidelberg, pp 1–2

    Google Scholar 

  • Brilha J (2016) Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage 8:119–134

    Article  Google Scholar 

  • Buchner E, Hölzel M, Schmeider M., Ferriere L, Koeberl C, Rasser M, Fietzke J., Frische M., Meier MMM, Busemann H, Maden C, Kutterolf S (2018) The meteorite from Steinheim, SW Germany: probably a pallasite. 81stAnnual Meeting of the Meteoritical Society (Moscow), LPI Contribution No. 2067, 2018, id.6055

  • Burek C (2012) The role of LGAPs (Local Geodiversity Action Plans) and Welsh RIGS as local drivers for geoconservation within geotourism in Wales. Geoheritage 4:45–63

    Article  Google Scholar 

  • Chauhan G, Biswas SK, Thakkar MG, Page KN (2021) The unique geoheritage of the Kachchh (Kutch) basin, Western India, and its conservation. Geoheritage 13:23. https://doi.org/10.1007/s12371-021-00535-1

    Article  Google Scholar 

  • Crawford AR (1972) Possible impact structure in India. Nature 237:96

    Article  Google Scholar 

  • Das Gupta R, Banerjee A, Goderis S, Claeys P, Vanhaecke F, Chakrabarti R (2017) Evidence for a chondritic impactor, evaporation-condensation effects and melting of the Precambrian basement beneath the “target” Deccan basalts at Lonar crater, India. Geochim Cosmochim Acta 215:51–75. https://doi.org/10.1016/j.gca.2017.07.022

    Article  Google Scholar 

  • Das PK, Misra S, Basavaiah N, Newsom HE, Dube A (2009) Rock magnetic evidence of asteroid impact origin of Ramgarh structure. India (abstract #1466). 40th Lunar and Planetary Science Conference. CD-ROM

  • Das PK, Misra S, Newsom HE, Sisodia MS (2011) Possible planar fractures, coesite, and accretionary lapilli from Ramgarh structure, India: new evidence suggesting an impact origin of the crater (abstract #1294). 42nd Lunar and Planetary Science Conference. CD-ROM

  • Dietz RS, McHone J (1974) Kaaba stone: not a meteorite, probably an agate. Meteor Planet Sci 9:173–179. https://doi.org/10.1111/j.1945-5100.1974.tb00072.x

    Article  Google Scholar 

  • Dutta A, Raychaudhuri D, Bhattacharya A (2018) The Ramgarh structure, Rajasthan, India: a meteorite impact crater? 49th Lunar and Planetary Science Conference (Abstract)

  • Earth Impact Database. 2019. Planetary and Space Science Centre University of New Brunswick Fredericton, New Brunswick, Canada. http://www.passc.net/EarthImpactDatabase/New%20website_05-2018/Index.html. Accessed October 2020

  • Erickson TM, Kirkland CL, Timms NE, Cavosie AJ, Davison TM (2020) Precise radiometric age establishes Yarrabubba, western Australia, as Earth’s oldest recognized meteorite impact structure. Nat Commun 11:1–8

    Article  Google Scholar 

  • Fredriksson K, Dube A, Milton DJ, Balasundaram MS (1973) Lonar Lake, India: An impact crater in basalt. Science 180:862–864. https://doi.org/10.1126/science.180.4088.862

    Article  Google Scholar 

  • French BM (1998) Traces of catastrophe. A handbook of shock-metamorphic effects in terrestrial meteorite impact structures. In: LPI contribution. Lunar and Planetary Institute, Houston, Texas, 120p

    Google Scholar 

  • French BM, Koeberl C (2010) The convincing identification of terrestrial meteorite impact structures: What works, what doesn’t, and why. Earth Sci Rev 98:123–170

    Article  Google Scholar 

  • Fudali RF, Milton DJ, Fredriksson K, Dube A (1980) Morphology of Lonar Crater, India: Comparisons and implications. Moon and Planets 23:493–515. https://doi.org/10.1007/BF00897591

    Article  Google Scholar 

  • Gaur VP, Survanshi H, Shrivastava SK, Nambiar KV (2016) Stratigraphy and correlation of Mesoproterozoic rocks associated with Mohar cauldron, Shivpuri district, Madhya Pradesh. Jour Geol Soc India 88:603–608. https://doi.org/10.1007/s12594-016-0526-2

    Article  Google Scholar 

  • Gilleaudeau GJ, Sahoo SK, Kah LC, Henderson MA, Kaufman AJ (2018) Proterozoic carbonates of the Vindhyan Basin, India: chemostratigraphy and diagenesis. Gond Res 57:10–25

    Article  Google Scholar 

  • Grady MM, Hutchison R, McCall GJH, Rothery DA (1998) Meteorites: their flux with time and impact effects. Geol Soc London Spl Publ 140:1–5

    Article  Google Scholar 

  • Gray M (2012) Valuing geodiversity in an ‘Ecosystem Services’ context. Scott Geograph Jour 128:177–194

    Article  Google Scholar 

  • Gray M (2019) Geodiversity, geoheritage and geoconservation for society. Intl Jour Geoheritage Parks 7:226–236

    Article  Google Scholar 

  • Gray M, Gordon JE, Brown EJ (2013) Geodiversity and ecosystem approach: the contribution of geoscience in delivering integrated management. Proceed Geologists’ Assoc 124:659–673

    Article  Google Scholar 

  • Gregory LC, Meert JG, Pradhan V, Pandit MK, Tamrat E, Malone SJ (2006) A paleomagnetic and geochronologic study of the Majhagawan kimberlite, India: implications for the age of the upper Vindhyan Supergroup. Precam Res 149:65–75

    Article  Google Scholar 

  • Grieve RAF (2006) Impact Structures in Canada. Geological Association of Canada, GEOtext 5, St. John's, 120p

  • Gupta SN, Arora YK, Mathur RK, Iqballuddin PB, Sahai TN, Sharma SB (1997) The Precambrian geology of the Aravalli region, southern Rajasthan and northeastern Gujarat. Mem Geol Surv India 123:262p

    Google Scholar 

  • Hjort J, Gordon JE, Murray G, Hunter ML Jr (2015) Why geodiversity matters in valuing nature’s stages. Conserv Biol 29:630–639

    Article  Google Scholar 

  • Hamers MF, Drury MR (2011) Scanning electron microscope-cathodoluminescence (SEM-CL) imaging of planar deformation features and tectonic deformation lamellae in quartz. Meteor Planet Sci 46:814–1831

    Article  Google Scholar 

  • Henriques MH, Pena dos Reis R, Brilha J, Mota TS (2011) Geoconservation as an emerging geoscience. Geoheritage 3:117–128

    Article  Google Scholar 

  • Henriques MH (2015) Geoconservation Policy. In: Tiess G, Majumder T, Cameron P (eds) Encyclopedia of Mineral and Energy Policy. Springer-Verlag, Berlin - Heidelberg, 3 p

    Google Scholar 

  • Jain SC, Gaur VP, Srivastava SK, Nambiar KV, Saxena HP (2001) Recent find of a cauldron structure in Bundelkhand Craton. Geol Surv India Spl Publ 64:289–297

    Google Scholar 

  • Jourdan F, Moynier F, Koeberl C, Eroglu S (2011) 40Ar/39Ar age of the Lonar crater and consequence for the geochronology of planetary impacts. Geology 39:671–674. https://doi.org/10.1130/G31888.1

    Article  Google Scholar 

  • Kale VS (2014) Geomorphic history and landscapes of India. In: Kale V (ed) Landscapes and Landforms of India. World Geomorphological Landscapes. Springer, Dordrecht, pp 25–37. https://doi.org/10.1007/978-94-017-8029-2_3

    Chapter  Google Scholar 

  • Kaur G, Singh S, Kaur P, Garg S, Fareeduddin, Pandit MK, Agrawal P, Acharya K, Ahuja A (2019) Vindhyan sandstone: a crowning glory of architectonic heritage from India. Geoheritage 11:1771. https://doi.org/10.1007/s12371-019-00389-8

  • Keerthy S, Vishnu CL, Li S-S, Reshma N, Praveen MN, Oommen T, Singh SP, Sajinkumar KS (2019) Reconstructing the dimension of Dhala Impact Crater, central India, through an integrated geographic information system and geological records. Planet. Space Sci 177:104691

    Article  Google Scholar 

  • Kenkmann T, Wulf G, Agarwal A (2020) Ramgarh, Rajasthan, India: A 10 km diameter impact structure. Meteor Planet Sci 55:936–961. https://doi.org/10.1111/maps.13454

    Article  Google Scholar 

  • Khan AA (2013) Paleogeography of Indian peninsula vis-à-vis geodynamic and petrotectonic significance of the Vindhyan Basin with special reference to Neo- Meso Proterozoic. Jour Indian Geol Congr 51:65–76

    Google Scholar 

  • Khan AJ (1980) Geology of Ramgarh crater. Geoviews 7:173–179

    Google Scholar 

  • Koeberl C, Peucker-Ehrenbrink B, Reimold WU, Shukolyukov A, Lugmair GW (2002) A comparison of the osmium and chromium isotopic methods for the detection of meteoritic components in impactites: Examples from the Morokweng and Vredefort impact structures, South Africa. In: Koeberl C, KG ML (eds) Catastrophic events and mass extinctions: Impacts and beyond, vol 356. Geol Soc America Spl Paper, pp 607–617

    Chapter  Google Scholar 

  • Kring DA (1995) The dimensions of the Chicxulub impact crater and impact melt sheet. Jour Geophy Res Planets 100(E8):16979–16986

    Article  Google Scholar 

  • Kring, DA (2017) Guidebook to the geology of Barringer Meteorite Crater, Arizona (a.k.a. Meteor Crater) 2nd edition. LPI Contribution No. 2042, Houston, 270 p

  • Kring DA, Claeys P, Gulick SP, Morgan JV, Collins GS (2017) Chicxulub and the exploration of large peak-ring impact craters through scientific drilling. GSA Today 27. https://doi.org/10.1130/GSATG352A.1

  • Kubalíková L (2013) Geomorphosite assessment for geotourism purposes. Czech Jour Tour 2:80–104. https://doi.org/10.2478/CJOT-2013-0005

  • Kumar J, Negi MS, Sharma R, Saha D, Mayor S, Asthana M (2011) Ramgarh magnetic anomaly in the Chambal Valley sector of Vindhyan basin: A possible meteorite impact structure and its implications in hydrocarbon exploration. American Assoc Petroleum Geologists, Search and Discovery 80145

  • Li S-S, Keerthy S, Santosh M, Singh SP, Deering CD, Satyanarayanan M, Praveen MN, Aneeshkumar V (2018) Anatomy of impactites and shocked zircon grains from Dhala reveals Paleoproterozoic meteorite impact in the Archean basement rocks of central India. Gond Res 54:81–101

    Article  Google Scholar 

  • Lyons JB, Officer CB, Borella PE, Lahodynsky R (1993) Planar lamellar substructures in quartz. Earth Planet Sci Letts 119:431–440

    Article  Google Scholar 

  • Maier W, Andreoli M, McDonald I, Higgins M, Boyce A, Shukolyukov A, Lugmair G, Ashwal L, Gräser P, Ripley E, Hart R (2006) Discovery of a 25-cm asteroid clast in the giant Morokweng impact crater, South Africa. Nature 441:203–206. https://doi.org/10.1038/nature04751

    Article  Google Scholar 

  • Mallet FR (1869) On the Vindhyan series as exhibited in the northwestern and central provinces of India. Mem Geol Surv India 7:129

    Google Scholar 

  • Malone SJ, Meert JG, Banerjee DM, Pandit MK, Tamrat E, Kamenov G, Pradhan VR, Sohl LE (2008) Paleomagnetism and detrital zircon geochronology of the Upper Vindhyan sequence, Son Valley and Rajasthan, India: A 1000 Ma closure age for the Purana basins? Precam Res 164:137–159

    Article  Google Scholar 

  • Markandeyulu A, Chaturvedi AK, Raju BVSN, Parihar PS, Miller R, Gooch G (2013) Application of high resolution airborne geophysical data in geological modelling of Mohar Cauldron Complex, Bundelkhand Massif, central India: implications for uranium exploration. Expl Geophy 45:134–146

    Article  Google Scholar 

  • Master S, Pandit MK (1999) New evidence for an impact origin of the Ramgarh structure. Meteor Planet. Science 34(Suppl. A):79

    Google Scholar 

  • Meert JG, Pandit MK (2015) The Archaean and Proterozoic history of Peninsular India: tectonic framework for Precambrian sedimentary basins in India. Geol Soc London, Mem 43:29–54. https://doi.org/10.1144/M43.3

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR (2010) The Precambrian tectonic evolution of India: A 3.0 billion year odyssey. Jour Asian Earth Sci 39:483–515

    Article  Google Scholar 

  • Misra S, Dube A, Srivastava PK, Newsom HE (2008) Time of formation of Ramgarh crater, India - constraints from geological structures (abstract #1502). 39th Lunar and Planetary Science Conference. CD-ROM

  • Misra S, Newsom HE, Prasad MS, Geissman JW, Dube A, Sengupta D (2009) Geochemical identification of impactor for Lonar crater, India. Meteor Planet Sci 44:1001–1018. https://doi.org/10.1111/j.1945-5100.2009.tb00784.x

    Article  Google Scholar 

  • Misra S, Panda D, Ray D, Newsom HE, Dube A, Sisodia MS (2013) Geochemistry of glassy rocks from Ramgarh structure, India (abstract #1020). 44th Lunar and Planetary Science Conference. CD-ROM

  • Misra S, Srivastava PK, Arif M (2019) Remote sensing, structural and rock magnetic analyses of the Ramgarh structure of SE Rajasthan, Central India–Further clues to its impact origin and time of genesis. In: Mukherjee S (ed) Tectonics and Structural Geology: Indian Context. Springer, New York, Geology, pp 327–352. https://doi.org/10.1007/978-3-319-99341-6_11

    Chapter  Google Scholar 

  • Mougel B, Moynier F, Koeberl C, Wielandt D, Bizzarro M (2019) Identification of a meteoritic component using chromium isotopic composition of impact rocks from the Lonar impact structure, India. Meteor Planet Sci 54:2592–2599. https://doi.org/10.1111/maps.13312

    Article  Google Scholar 

  • Murali AV, Lulla KP (1992) Ramgarh crater, Rajasthan, India: Study of multispectral images obtained by Indian Remote Sensing Satellite (IRS-1A). Geocarta Intl 3:75–79

    Article  Google Scholar 

  • Murali AV, Williams S (1990) Ramgarh Crater, Rajasthan, India: Study of multispectral data obtained by Indian remote sensing satellite (IRS-1A). In: 21st Lunar and Planetary Science Conference, pp 821–822

    Google Scholar 

  • Niningerh H (1956) Arizona’s Meteorite Crater. World Press Inc., Denver, Colorado, USA, p 232

    Google Scholar 

  • Öhman T, Aittola M, Korteniemi J, Kostama VP, Raitala J (2010) Polygonal impact craters in the solar system: observations and implications. Geol Soc America Spl Pap 465:51–65

    Google Scholar 

  • Oldham T (1856) Remarks on the classification of the rocks of Central India, resulting from the investigations of the geological Survey. Jour Asiatic Soc Bengal 25:224–250

    Google Scholar 

  • Osae S, Misra S, Koeberl C, Sengupta D, Ghosh S (2005) Target rocks, impact glasses, and melt rocks from the Lonar impact crater, India: petrography and geochemistry. Meteor Planet Sci 40:1473–1492

    Article  Google Scholar 

  • Page KN (2018) Fossils, heritage and conservation: managing demands on a precious resource. In: Reynard E, Brilha J (eds) Geoheritage assessment, protection, and management. Elsevier, pp 107–128 (Chapter 6)

    Google Scholar 

  • Pareta K, Pareta U (2016) Landform classification and geomorphological mapping of Ramgarh Structure, Rajasthan (India) through remote sensing and geographic information system (GIS). Jour Hydrology Environ Res 4:1–17

    Google Scholar 

  • Pati JK, Jourdan F, Armstrong RA, Reimold WU, Prakash K (2010) First SHRIMP U-Pb and 40Ar/39Ar chronological results from impact melt breccia from the Paleoproterozoic Dhala impact structure, India. In: Reimold WU, Gibson RL (eds) Large Meteorite Impacts and Planetary Evolution IV. Geol Soc America Spl Paper 465:571–591

    Google Scholar 

  • Pati JK, Poelchau MH, Reimold WU, Nakamura N, Kuriyama Y, Singh AK (2019) Documentation of shock features in impactites from the Dhala impact structure, India. Meteor Planet Sci 54:2312–2333. https://doi.org/10.1111/maps.13369n

    Article  Google Scholar 

  • Pati JK, Qu WJ, Koeberl C, Reimold WU, Chakravorty M, Schmitt RT (2017) Geochemical evidence of an extraterrestrial component in impact melt breccia from the Paleoproterozoic Dhala impact structure, India. Meteor Planet Sci 52:722–736

    Article  Google Scholar 

  • Pati JK, Reimold WU, Koeberl C, Pati P (2008) The Dhala structure, Bundelkhand Craton, central India – eroded remnant of a large Paleoproterozoic impact structure. Meteor Planet Sci 43:1383–1398. https://doi.org/10.1111/j.1945-5100.2008.tb00704.x

    Article  Google Scholar 

  • Pereira DI, Pereira P, Brilha J, Santos L (2013) Geodiversity assessment of Parana State (Brazil): an innovative approach. Environ Management 52:541–552

    Article  Google Scholar 

  • Prasad B (1984) Geology, sedimentation and paleogeography of the Vindhyan Supergroup, Southeast Rajasthan. Geol Surv India Mem 116:1–107

    Google Scholar 

  • Prosser CD, Bridgland DR, Brown EJ, Larwood JG (2011) Geoconservation for science and society: challenges and opportunities. Proc Geologists’ Assoc 122:337–342

    Article  Google Scholar 

  • Purohit V, Sisodia MS (2013) Universal-stage measurements of planar deformation features in shocked quartz grains recovered from Ramgarh structure (abstract #1151). 44th Lunar and Planetary Science Conference. CD-ROM

  • Rakshit AM (1973) A short report on the ring structure near Ramgarh. Kota district. Rajasthan. Geol Surv India 15

  • Quasim MA, Ahmad AHM, Ghosh SK (2017) Depositional environment and tectono-provenance of Upper Kaimur Group sandstones, Son Valley, Central India. Arab Jour Geosci 10:4

    Article  Google Scholar 

  • Ramasamy SM (1987) Evolution of Ramgarh dome, Rajasthan: India. Rec Geol Surv India 113:13–22

    Google Scholar 

  • Ramasamy SM (1988) The lithostratigraphy and the origin of Ramgarh Dome, Rajasthan, India. Rec Geol Surv India 114:15–24

    Google Scholar 

  • Rana S, Agarwal V (2016) Microscopic evidences for the impact origin of Ramgarh structure, Rajasthan, India. Jour Indian Geophy Union 20:544–550

    Google Scholar 

  • Ray D, Misra S, Upadhyay D, Newsom HE, Peterson EJ, Dube A, Satyanarayanan M (2020) Iron-nickel metallic components bearing silicate-melts and coesite from Ramgarh impact structure, west-central India: possible identification of the impactor. Jour Earth System Sci. 129:118. https://doi.org/10.1007/s12040-020-1371-7

    Article  Google Scholar 

  • Ray D, Upadhyay D, Misra S, Newsom HE, Ghosh S (2017) New insights on petrography and geochemistry of impactites from the Lonar crater, India. Meteor Planet Sci 52:1577–1599. https://doi.org/10.1111/maps.12881

  • Ramakrishnan M, Vaidyanadhan R (2008) Geology of India, vol 1 and 2. Geol Soc India, Bangalore

    Google Scholar 

  • Reimold WU, Gibson RL (1996) Geology and evolution of the Vredefort impact structure, South Africa. Jour African Earth Sci 23:125–162

    Article  Google Scholar 

  • Reimold WU, Trepmann C, Simonson B (2006) Comment on Impact origin of the Ramgarh structure, Rajasthan: Some new evidences, by Sisodia MS, Lashkari G, Bhandari N. Jour Geol Soc India 68:561–563

    Google Scholar 

  • Reynard E, Fontana G, Kozlik L, Scapozza C (2007) A method for assessing scientific and additional values of geomorphosites. Geogr Helv 62:148–158

    Article  Google Scholar 

  • Reynard E, Perret A, Bussard J, Grangier L, Martin S (2016) Integrated approach for inventory and management of geomorphological heritage at the regional scale. Geoheritage 8:43–60

    Article  Google Scholar 

  • Sanz J, Zamalloa T, Maguregi G, Fernandez L, Echevarria I (2020) Educational potential assessment of geodiversity sites: a proposal and case study in the Basque Country (Spain). Geoheritage, 12 Article Number 23

  • Sarangi S, Gopalan K, Kumar S (2004) Pb–Pb age of earliest megascopic, eukaryotic alga bearing Rohtas Formation, Vindhyan Supergroup, India: implications for Precambrian atmospheric oxygen evolution. Precam Res 132:107–121. https://doi.org/10.1016/j.precamres.2004.02.006

    Article  Google Scholar 

  • Schmieder M, Kring DA (2020) Earth’s impact events through geologic time: a list of recommended ages for Terrestrial Impact Structures and deposits. Astrobiology 20(1). https://doi.org/10.1089/ast.2019.2085

  • Schulz T, Luguet A, Wegner W, van Acken D, Koeberl C (2016) Target rocks, impact glasses, and melt rocks from the Lonar crater, India: Highly siderophile element systematics and Sr-Nd-Os isotopic signatures. Meteor Planet Sci 51:1323–1339. https://doi.org/10.1111/maps.12665

    Article  Google Scholar 

  • Sen S, Mishra M, Patranabis-Deb S (2014) Petrological study of the Kaimur Group sediments, Vindhyan Supergroup, Central India: implications for provenance and tectonics. Geosci Jour 18:307–324

    Article  Google Scholar 

  • Sharma HS (1973) Ramgarh structure, India. Nature 242:39–40

    Article  Google Scholar 

  • Sharma JK, Singh SR (1970) A note on the geophysical survey in Ramgarh dome. Geol Surv India (unpublished progress report)

  • Sharples C (1993) A methodology for identification of significant landforms and geological sites for geoconservation purposes. Report submitted to the Forestry Commission, Tasmania (Australia)

    Google Scholar 

  • Shekhar S, Kumar P, Chauhan G, Thakkar MG, Page KN (2019) Conservation and sustainable development of Geoheritage, Geopark, and Geotourism: A case study of Cenozoic successions of western Kachchh, India. Geoheritage 11:1475–1488

    Article  Google Scholar 

  • Sial AN, Chen J, Lacerda LD, Tewari VC, Pandit MK, Gaucher C, Frei R, Ferreira VP, Cirilli S, Barbosa JA, Pereira NS (2016) Mercury enrichment and Hg isotopes in Cretaceous-Paleogene boundary successions: Links to volcanism and palaeoenvironmental impacts. Cretac Res 66:60–81

    Article  Google Scholar 

  • Singh AK, Pati JK, Patil SK, Reimold WU, Rao AK, Pandey OP (2021a) Anisotropy of magnetic susceptibility (AMS) of impact melt breccia and target rocks from the Dhala impact structure, India. In: Reimold WU, Koeberl C (eds) Large Meteorite Impacts and Planetary Evolution VI, vol 550. Geol Soc America Spl Paper, pp 1–22. https://doi.org/10.1130/2021.2550(14)

    Chapter  Google Scholar 

  • Singh AK, Pati JK, Sinha R, Reimold WU, Prakash K, Nadeem M, Divedi S, Mishra D, Dwivedi AK (2021b) Characteristic landforms and geomorphic features associated with impact structures: Observations at the Dhala structure, north-central India. In: Earth Surf Process Landforms, pp 1–22 wileyonlinelibrary.com/journal/esp

    Google Scholar 

  • Singh AK, Upadhyay D, Pruseth KL, Mezger K, Nanda JK (2021c) Age, provenance and tectonic setting of metasedimentary rocks of the Simlipal Complex, Singhbhum Craton, eastern India. Precam Res 355:106113

    Article  Google Scholar 

  • Singh AK, Upadhyay D, Pruseth KL, Mezger K, Nanda JK, Maiti S, Saha D (2021d) Shock metamorphic features in the Archean Simlipal Complex, Singhbhum Craton, eastern India: possible remnant of a large impact structure. Jour Geol Soc India 97:35–47

    Article  Google Scholar 

  • Sisodia MS, Lashkari G, Bhandari N (2006) Impact origin of the Ramgarh structure, Rajasthan: some new evidences. Jour Geol Soc India 67:423–431

    Google Scholar 

  • Sisodia MS, Ranawat PS (2020) A Monograph on Ramgarh Meteorite Impact Crater Rajasthan. Indian National Trust for Art and Cultural Heritage publication, 42p

    Google Scholar 

  • Son TH, Koberel C (2007) Chemical variation in Lonar impact glasses and impactities. GFF 129:161–176

    Article  Google Scholar 

  • Srivastava DC, Sahay A (2003) Brittle tectonics and pore-fluid conditions in the evolution of the Great Boundary Fault around Chittaurgarh, Northwestern India. Jour. Struct. Geol. 25:1713–1733

    Article  Google Scholar 

  • Srivastava SK, Nambiar KV (2003) 3D characterization of the Mohar cauldron, Shivpuri District, Madhya Pradesh. Geol Surv India Rec 136:52–54

    Google Scholar 

  • Srivastava SK, Nambiar KV, Gaur VP (2002) Reconnaissance mapping of Bundelkhand Gneissic Complex in parts of Shivpuri and Datia districts, Madhya Pradesh, with specialized thematic mapping in selected sectors. Geol Surv India Rec 135:64–66

  • Stöffler D, Langenhorst F (1994) Shock metamorphism of quartz in nature and experimental. I. Basic observation and theory. Meteoritics 29:155–181

    Article  Google Scholar 

  • Tomić N, Božić S (2014) A Modified Geosite Assessment Model (M-GAM) and its application on the Lazar Canyon area (Serbia). Intl Jour Environ Res 8:1041–1052

  • Turner CC, Meert JG, Pandit MK, Kamenov GD (2013) A detrital zircon U–Pb and Hf isotopic transect across the Vindhyan Basin, India: Implications for basin evolution and paleogeography. Gond Res 26:348–364

    Article  Google Scholar 

  • UNESCO - United Nations Education, Scientific and Cultural Organization (2016) UNESCO global geoparks. Celebrating Earth Heritage, Sustaining local Communities. UNESCO, Paris. http://www.unesco.org/new/en/naturalsciences/environment/earth-sciences/unesco-global-geoparks/

    Google Scholar 

  • Valdiya KS, Bhatia SB, Gaur VK (1982) Geology of Vindhyachal. Hindustan Publ. Corp, New Delhi

    Google Scholar 

  • Verma A, Shukla UK (2015) Deposition of the Upper Rewa Sandstone Formation of Proterozoic Rewa Group of the Vindhyan basin, MP, India: a reappraisal. Jour Geol Soc India 86:421–437

    Article  Google Scholar 

  • Verma PK (1996) Evolution and age of the Great Boundary Fault of Rajasthan. Mem Geol Soc India 36:197–212

    Google Scholar 

  • Wolniewicz P (2021) Beyond geodiversity sites: exploring the educational potential of widespread geological features (rocks, minerals and fossils). Geoheritage, 13 Article Number 34

Download references

Acknowledgements

We are especially thankful to Martin Schmieder for his painstaking effort, constructive comments, and also acknowledge the comments from an anonymous reviewer that have improved the manuscript immensely. We also thank Kevin Page for his excellent editorial handling. The help rendered by Hitesh Kumar in drafting and finalizing some of the figures is sincerely acknowledged. We thank Pradeep Agrawal and Mohan Kumawat for their useful input and help.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have undertaken the field investigations together and contributed to manuscript preparation.

Corresponding author

Correspondence to Manoj K. Pandit.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandit, M.K., Master, S. The Ramgarh Terrestrial Impact Structure in Rajasthan State: a ‘Geoheritage Site and Geopark’ Candidate from North-Central India. Geoheritage 13, 81 (2021). https://doi.org/10.1007/s12371-021-00601-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12371-021-00601-8

Keywords

Navigation