Skip to main content
Log in

GC–MS and FTIR Analysis of Chemical Compounds in Ocimum Gratissimum Plant

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The plant tissues produce many chemical compounds with potential biological activities. The present study has been carried out to identify the chemical constituents present in the leaves, stems and seeds of Ocimum gratissimum plant using Gas Chromatography Mass Spectroscopy along with its functional group analysis using Fourier Transform Infrared Spectrophotometer. Gas Chromatography Mass Spectroscopy (GC−MS) study showed the presence of Eugenol, Flavone, Caryophyllene, Oleoc acid, Phytol, Octadecanoic acid, Clohexene-1-methanol4-[1-methylethenyl]-acetate, Artemisinin, Phenol,3,5-bis [1,1-dimethylethyl]- and Methyl-α-ionone as major compounds. These compounds were already proved to possess anti-oxidative, anti-mycotic, anti-viral, anti-parasitic, anti-oxidant, anti-insect, anti-inflammatory, anaesthetic, anti-carcinogenic, anti-microbial, anti-tumour, analgesic, antibacterial, fungicide, cytotoxicity and anti-fungal activities. The functional groups such as C=O, O–H, C–N and C=C were identified using FTIR method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

REFERENCES

  1. M.S. Villiathan, Curr. Sci. 75 (11), 1122 (1998).

    Google Scholar 

  2. I. Davidson-Hunt, MASA J. 16 (1), 13 (2000).

    Google Scholar 

  3. J. B. Harborne, Textbook of Phytochemical methods, 1st ed. (Chapman and Hall, London, 1973).

    Google Scholar 

  4. S. Santhosh Kumar and C. Uma, Int. J. Ayurvedic Med. 4 (4), 328 (2013).

    Google Scholar 

  5. V. Singh, S. Amdekar, and O. Verma, Webmed Central Pharmacol. 1 (10), MC001046 (2010).

    Google Scholar 

  6. S. Jain, Int. J. Maxi Res. 1 (1), 3 (2015).

    Google Scholar 

  7. G. Pandey, Int. J. Pharm. Sci. Rev. Res. 5 (1), 61 (2010).

    Google Scholar 

  8. S. G. Buddhadev, Int. Peer Revd. Ayur. J. 2 (2), 1 (2014).

    Google Scholar 

  9. P. K. Kumar, Int. J. Adv. Pharm. Biol. Chem. 1 (3), 406 (2012).

    Google Scholar 

  10. B. Joseph, Br. J Pharm. Res. 3 (2), 273 (2013).

    Article  Google Scholar 

  11. S. K. Gupta, J. Prakash, and S. Srivastava, Indian J. Exp. Biol. 40 (7), 765 (2002).

    Google Scholar 

  12. S. K. Saar, L. D. Nair, and A. Arora, Int. J. Appl. Scie. Res. Rev., 3 (4), 130, (2016).

    Google Scholar 

  13. T. Kottke, A. Batschauer, M. Ahmad, et al., Biochemistry 45 (8), 2472 (2006).

    Article  Google Scholar 

  14. A. Khoddami, M. AS. Wilkes, and T. H. Roberts, Molecules 18 (2):2328 (2013).

    Article  Google Scholar 

  15. L. K. Kanthal, A. Dey, K. Satyavathi, and P. Bhojaraju, Pharmacognosy Res., 6 (1), 58 (2014).

    Article  Google Scholar 

  16. G. M. Barrow, in Introduction to Molecular Spectroscopy (McGraw-Hill, Kogakusha Ltd., 1962), pp. 1−44.

    Google Scholar 

  17. L. J. Bellamy, The infrared Spectra of Complex Molecules (Chapman and Hall, London, 1975), Vol. 1.

    Book  Google Scholar 

  18. R. K. Joshi, Acta Chromatogr. 29 (1), 111 (2017).

    Article  Google Scholar 

  19. L. G. Matasyoh, C. Josphat, F. N. Matasyoh, et al., Afr. J. Biotechnol., 6 (6), 760 (2007).

    Google Scholar 

  20. P. R. Rastogi and B. N. Mehrotra, in Compendium of Indian Medicinal Plants (PID, New Delhi, 2001), Vol. 3, pp. 434–455.

    Google Scholar 

  21. J. Gowri, P. Arockia Sahayaraja, V. Dharmalingama, et al., Int. J. Nano Corros. Sci. Eng. 2 (5), 322 (2015).

    Google Scholar 

  22. M. Elangovan, M. S. Dhanarajan, and I. Elangovan, World J. Pharm. Res. 4 (3), 1284 (2015).

    Google Scholar 

  23. H. Subrahmanian, P. Suriyamoorthy, and D. Kanakasabapathi, J. Pharmaceut. Sci. Res. 9 (11), 2062 (2017).

    Google Scholar 

  24. M. Kh. Baseri and S. Baker, Rom. J. Biophys., 21 (4), 277 (2011).

    Google Scholar 

  25. R. Selvaraju, P. Sakuntala, and K. A. Jaleeli, Int. J. Emerg. Tech. Eng. Res. 5 (4), 131 (2017).

    Google Scholar 

  26. S. Balasubramanian, D. Ganesh, P. Shridhar Reddy, et al., Asian J. Pharm. Anal. Med. Chem. 2 (2), 71 (2014).

    Google Scholar 

  27. K. K. Igwe, P. O. Nwankwo, I. E. Otuokere, et al., J. Res. Pharm. Sci. 2 (11), 1 (2015).

    Article  Google Scholar 

  28. J. M. Hannan, L. Marenah, L. Ali, et al., J. Endocrinol. 189 (1), 127 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

I.P. Sakuntala would like to thank Prof. R. Selvaraju and Dr. Kaleem Ahmed Jaleeli for their constant guidance and support in completing my research work. Also express my heartfelt thanks to Cetralized Research Laboratory, R. B. V. R. R. Women’s College, Hyderabad and SAIF, IIT, Chennai for providing necessary facilities to complete this work successfully.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sakuntala.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvaraju, R., Sakuntala, P. & Jaleeli, K.A. GC–MS and FTIR Analysis of Chemical Compounds in Ocimum Gratissimum Plant. BIOPHYSICS 66, 401–408 (2021). https://doi.org/10.1134/S0006350921030167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030167

Navigation