Skip to main content
Log in

The Role of Phosphate Anions in Autoinduced and Photoinduced Oxidation of NADH

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

The effects of mono- and disubstituted phosphates on the photolysis reaction of reduced nicotinamide adenine dinucleotide (NADH) in a frozen (77 K) aqueous solution were studied by EPR. The dependence of the yield of the paramagnetic intermediates of the reaction, that is, the NADH+ cation radical and atomic hydrogen, on the concentration of phosphates was determined. The results were interpreted from the point of view of the basicity and electron acceptor properties of phosphates. Electron spectroscopy data revealed a significant acceleration of auto-oxidation and photoinduced oxidation of NADH under normal conditions (20°C, aqueous medium, phosphate buffer, pH 6.3). The rate of the dark reaction was directly proportional to the total concentration of orthophosphates and hydrophosphates and was insensitive to oxygen. On the basis of experiments with a nitroxyl trap, the conclusion was made that the reaction is not of a radical nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. U. Eisner and J. Kuthan, Chem. Rev. 72, 1 (1972).

    Article  Google Scholar 

  2. S. G. A. Alivisatos, F. Ungar, and G. Abraham, Nature 203, 973 (1964).

    Article  ADS  Google Scholar 

  3. D. M. Stout and A. I. Meyers, Chem. Rev. 82, 223 (1982).

    Article  Google Scholar 

  4. D. G. Nicholls and S. J. Ferguson, Bioenergetics (Academic, London, 2002).

    Google Scholar 

  5. T. Bugg, Introduction to Enzyme and Coenzyme Chemistry (Blackwell, Oxford, 2004).

    Book  Google Scholar 

  6. S. Boulton, S. Kyle, and D. W. Durkacz, Br. J. Cancer 76, 845 (1997).

    Article  Google Scholar 

  7. E. Ciesielska, K. Studzian, E. Zyner, at al., Cell. Mol. Biol. Lett. 5, 441 (2000).

    Google Scholar 

  8. M. Zhang, Y. Zhang, L. Zhengwen, et al., J. Environ. Manage. 232, 197 (2019).

    Article  Google Scholar 

  9. P. P. Levin, O. N. Brzhevskaya, and O. S. Nedelina, Russ. Chem. Bull. 56 (7), 1325 (2007).

  10. O. N. Brzhevskaya, E. N. Degtyarev, T. S. Zhuravleva, et al., Dokl. Biochem. Biophys. 420, 119 (2008).

    Article  Google Scholar 

  11. O. S. Nedelina, O. N. Brzhevskaya, and E. N. Degtyarev, Dokl. Chem. 428 (2), 233 (2009).

  12. A. A. Krasnovskii and G. P. Brin, Dokl. Akad. Nauk SSSR 158 (1),225 (1964).

    Google Scholar 

  13. A. V. Umrikhina, A. N. Luganskaya, and A. A. Krasnovskii, Dokl. Akad. Nauk SSSR 304 (6),1485 (1989).).

    Google Scholar 

  14. J. Jortner, M. Ottolenghi, J. Rabani, et al., J. Chem. Phys. 37, 2488 (1962).

    Article  ADS  Google Scholar 

  15. O. N. Brzhevskaya, E. N. Degtyarev, P. P. Levin, et al., Dokl. Biochem. Biophys. 405, 395 (2008).

    Article  Google Scholar 

  16. A. Anne, P. Hapiot, J. Moiroux, et al., J. Am. Chem. Soc. 114, 4694 (1992).

    Article  Google Scholar 

  17. J. Zielonka, A. Marcinek, J. Adamus, et al., J. Phys. Chem. A 107 (46), 9860 (2003).

    Article  Google Scholar 

  18. B. Czochralska and L. Lindquist, Chem. Phys. Lett. 101, 297 (1983).

    Article  ADS  Google Scholar 

  19. J. Moiroux and P. Elving, J. Am. Chem. Soc. 108, 6533 (1980).

    Article  Google Scholar 

  20. J. Gebicki, A. Marcinek, and J. Zielonka, Acc. Chem. Res. 37 (6), 379 (2004).

    Article  Google Scholar 

  21. C. O. Schmakel, K. S. V. Santhanam, and P. J. Elving, J. Am. Chem. Soc. 97, 5083 (1975).

    Article  Google Scholar 

  22. P. J. Elving, W.T. Bresnahan, J. Moiroux, et al., Bioelectrochem. Bioenerg. 9, 365 (1982).

    Article  Google Scholar 

  23. J. Tornmalm, E. Sandberg, M. Rabasovic, et al., Sci. Rep. 9, 15070 (2019). https://doi.org/10.1038/s41598-019-51526-w

    Article  ADS  Google Scholar 

  24. B. Czochralska, W. Kawczynski, D. Bartosz, et al., Biochim. Biophys. Acta, Gen. Subj. 801 (3), 403 (1984).

Download references

Funding

The work was carried out with budget funding (FANO project no. 0082-2014-0009, state registration no. AAAA-A17-117040610309-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kholuiskaya.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Additional information

Translated by E. Puchkov

Abbreviations: TEMPOL—4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl; Pi—mono- and disubstituted phosphates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brzevskaya, O.N., Degtyarev, E.N. & Kholuiskaya, S.N. The Role of Phosphate Anions in Autoinduced and Photoinduced Oxidation of NADH. BIOPHYSICS 66, 379–384 (2021). https://doi.org/10.1134/S0006350921030027

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030027

Navigation