Skip to main content
Log in

The Structural Organization of the HMGB1 Nuclear Protein and Its Effect on the Formation of Ordered Supramolecular Complexes

  • MOLECULAR BIOPHYSICS
  • Published:
Biophysics Aims and scope Submit manuscript

Abstract

HMGB1 is one of the key proteins of the cell. HMGB1 performs its main functions predominantly in the cell nucleus, as an essential component of DNA–protein and multiprotein complexes. It plays an important role in various cellular processes, such as transcription, replication, and DNA repair. However, it has also been found outside the nucleus: in the cytoplasmic and extracellular space. Despite numerous publications on the structure and functioning of HMGB1, the molecular mechanisms that underlie the vast variety of functions performed by this protein still remain unclear. In this paper, we report recent data on the organization of the protein structure and its effects on HMGB1 interactions with DNA and other proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. M. Bustin and R. Reeves, Proc. Nat. Acad. Sci. U. S. A. 54, 35 (1996).

    Google Scholar 

  2. M. Štros, Biochim. Biophys. Acta, Gene Regul. Mech. 1799, 101 (2010).

    Article  Google Scholar 

  3. E. Chikhirzhina, G. Chikhirzhina, and A. Polyanichko, Biomed. Spectrosc. Imaging 3, 345 (2014).

    Article  Google Scholar 

  4. Y. V. Postnikov and M. Bustin, Biochim. Biophys. Acta, Gene Regul. Mech. 1859, 462 (2016).

    Article  Google Scholar 

  5. E. Chikhirzhina, T. Starkova, and A. Polyanichko, Biophysics (Moscow) 63, 858 (2018).

    Article  Google Scholar 

  6. E. Chikhirzhina, T. Starkova, and A. Polyanichko, Biophysics (Moscow) 65, 202 (2020).

    Article  Google Scholar 

  7. M. Stros, E. Polanska, M. Kucirek, et al., PLoS One 10, e0138774 (2015).

    Article  Google Scholar 

  8. R. Reeves, DNA Repair 36, 122 (2015).

    Article  Google Scholar 

  9. P. Mandke and K. M. Vasquez, DNA Repair (Amst.) 83, 102701 (2019).

    Article  Google Scholar 

  10. A. M. Read, P. D. Cary, C. Crane-Robinson, et al., Nucleic Acids Res. 21, 3427 (1993).

    Article  Google Scholar 

  11. T. Chi, Nat. Rev. Immunol. 4, 965 (2004).

    Article  Google Scholar 

  12. M. Stros, D. Launholt, and K. D. Grasser, Cell. Mol. Life Sci. 64, 2590 (2007).

    Article  Google Scholar 

  13. L. H. Pevny and S. K. Nicolis, Int. J. Biochem. Cell Biol. 42, 421 (2010).

    Article  Google Scholar 

  14. P. Bernard and V. R. Harley, Int. J. Biochem. Cell Biol. 42, 400 (2010).

    Article  Google Scholar 

  15. F. Oppel, N. Muller, G. Schackert, et al., Mol. Cancer 10, 137 (2011).

    Article  Google Scholar 

  16. O. Leis, A. Eguiara, E. Lopez-Arribillaga, et al., Oncogene 31, 1354 (2012).

    Article  Google Scholar 

  17. A. Lai, M. Wan, J. Wu, et al., Proc. Natl. Acad. Sci. U. S. A. 106, 1169 (2009).

    Article  ADS  Google Scholar 

  18. J. O. Thomas and K. Stott, Biochem. Soc. Trans. 40, 341 (2012).

    Article  Google Scholar 

  19. M. Watson, K. Stott, and J. O. Thomas, J. Mol. Biol. 374, 1286 (2007).

    Article  Google Scholar 

  20. K. Stott, M. Watson, F. S. Howe, et al., J. Mol. Biol. 403, 706 (2010).

    Article  Google Scholar 

  21. V. N. Uversky, Eur. J. Biochem. 269, 2 (2002).

    Article  Google Scholar 

  22. L. Breydo, J. M. Redington, and V. N. Uversky, Int. Rev. Cell. Mol. Biol. 329, 145 (2017).

    Article  Google Scholar 

  23. V. N. Uversky, Prot. Sci. 22, 693 (2013).

    Article  Google Scholar 

  24. V. N. Uversky, Cell. Mol. Life Sci. 74, 3065 (2017).

    Article  Google Scholar 

  25. A. L. Darling and V. N. Uversky, Molecules 22, pii: E2027 (2017).

    Article  Google Scholar 

  26. E. Venereau, M. Casalgrandi, M. Schiraldi, et al., J. Exp. Med. 209, 1519 (2012).

    Article  Google Scholar 

  27. H. Yang, P. Lundback, L. Ottosson, et al., Mol. Med. 18, 250 (2012).

    Article  Google Scholar 

  28. A. Raucci, S. Di Maggio, F. Scavello et al., Cell. Mol. Life Sci. 76, 211 (2019).

    Article  Google Scholar 

  29. M. Stros, M. Kucirek, S.A. Sani, et al., Biochim. Biophys. Acta Gen. Regul. Mech. 1861, 200 (2018).

    Article  Google Scholar 

  30. G. Verrijdt, A. Haelens, E. Schoenmakers, et al., Biochem. J. 361 (Pt. 1), 97 (2002).

    Article  Google Scholar 

  31. X. Zhu, J. S. Messer, Y. Wang, et al., J. Clin. Invest. 125, 1098 (2015).

    Article  Google Scholar 

  32. H. Yang, H. Wang, Z. Ju, et al., J. Exp. Med. 212, 5 (2015).

    Article  Google Scholar 

  33. K. Stark, V. Philippi, S. Stockhausen, et al., Blood 128, 2435 (2016).

    Article  Google Scholar 

  34. M. Tirone, N. L. Tran, C. Ceriotti, et al., J. Exp. Med. 215, 303 (2018).

    Article  Google Scholar 

  35. E. Venereau, C. Ceriott, and M. E. Bianchi, Front. Immunol. 6, 442 (2015).

    Article  Google Scholar 

  36. N. Lohani and M. R. Rajeswari, Curr. Protein Pept. Sci. 17, 762 (2016).

    Article  Google Scholar 

  37. M. E. Bianchi, M. P. Crippa, A. A. Manfredi, et al., Immunol. Rev. 280, 74 (2017).

    Article  Google Scholar 

  38. B. I. Kuznik, V. Kh. Khavinson, N. S. Lin’kova, et al., Usp. Fiziol. Nauk 48, 40 (2017).

    Google Scholar 

  39. A. Polyanichko and E. Chikhirzhina, Spectroscopy 27, 393 (2012).

    Article  Google Scholar 

  40. A. M. Polyanichko and E.V. Chikhirzhina, J. Mol. Struct. 1044, 167 (2013).

    Article  ADS  Google Scholar 

  41. A. Polyanichko, E. Chikhirzhina, V. Andruschchenko, et al., Biopolymers 83, 182 (2006).

    Article  Google Scholar 

  42. E. V. Chikhirzhina, V. I. Vorob’ev, and A. M. Polyani-chko, Mol. Biol. (Moscow) 47, 299 (2013).

    Article  Google Scholar 

  43. L. Cato, K. Stott, M. Watson, et al., Mol. Biol. 384, 1262 (2008).

    Article  Google Scholar 

  44. L. A. Kohlstaedt, E. C. Sung, A. Fujishige, et al., J. Biol. Chem. 262, 524 (1987).

    Article  Google Scholar 

  45. L. A. Kohlstaedt and R. D. Cole, Biochemistry 33, 570 (1994).

    Article  Google Scholar 

  46. E. Polanska, S. Pospisilova, and M. Stros, PLoS One 9, e89070 (2014).

    Article  ADS  Google Scholar 

  47. T. Imamura, H. Izumi, G. Nagatani, et al., J. Biol. Chem. 276, 7534 (2001).

    Article  Google Scholar 

  48. K. McKinney and C. Prives, Mol. Cell Biol. 22, 6797 (2002).

    Article  Google Scholar 

  49. P. Rowell, K. L. Simpson, K. Stott, et al., Structure 20, 2014 (2012).

    Article  Google Scholar 

  50. K. M. Livesey, R. Kang, H. J. Zeh III, et al., Autophagy 8, 846 (2012).

    Article  Google Scholar 

  51. K. M. Livesey, R. Kang, P. Vernon, et al., Cancer Res. 72, 1996 (2012).

    Article  Google Scholar 

  52. E. Y. Krynetski, N. F. Krynetskaia, M. E. Bianchi, et al., Cancer Res. 63, 100 (2003).

    Google Scholar 

  53. F. Yuan, L. Gu, S. Guo, C. Wang, et al., J. Biol. Chem. 279, 20935 (2004).

    Article  Google Scholar 

  54. Y. Zhang, F. Yuan, S. R. Presnell, et al., Cell 122, 693 (2005).

    Article  Google Scholar 

  55. R. Prasad, Y. Liu, L. J. Deterding, et al., Mol. Cell 27, 829 (2007).

    Article  Google Scholar 

  56. Y. Liu, R. Prasad, and S. H. Wilson, Biochim. Biophys. Acta, Gene Regul. Mech. 1799, 119 (2010).

    Article  Google Scholar 

  57. J. Malina, J. Kasparkova, G. Natile, et al., Chem. Biol. 9, 629 (2002).

    Article  Google Scholar 

  58. I. Ugrinova, I. G. Pashev, and E. A. Pasheva, Biochemistry (Moscow) 48, 6502 (2009).

    Article  Google Scholar 

  59. I. Ugrinova, S. Zlateva, I. G. Pashev, et al., Int. J. Biochem. Cell Biol. 41, 1556 (2009).

    Article  Google Scholar 

  60. I. Ugrinova, I. G. Pashev, and E. A. Pasheva, Mol. Biol. Rep. 36, 1399 (2009).

    Article  Google Scholar 

  61. D. J. Sawchuk, J. Mansilla-Soto, C. Alarcon, et al., J. Biol. Chem. 279, 29821(2004).

    Article  Google Scholar 

  62. Y. Yumoto, H. Shirakawa, M. Yoshida, et al., J. Biochem. 124, 519 (1998).

    Article  Google Scholar 

  63. D. C. van Gent, K. Hiom, T. T. Paull, et al., EMBO J. 16, 2665 (1997).

    Article  Google Scholar 

  64. M. Stros, D. Cherny, and T. M. Jovin, Eur. J. Biochem. 267, 4088 (2000).

    Article  Google Scholar 

  65. A. J. Little, E. Corbett, F. Ortega, et al., Nucleic Acids Res. 41, 3289 (2013).

    Article  Google Scholar 

  66. R. B. West and M. R. Lieber, Mol. Cell Biol. 18, 6408 (1998).

    Article  Google Scholar 

  67. R. Reeves, Biochim. Biophys. Acta, Gene Regul. Mech. 1799, 3 (2010).

    Article  Google Scholar 

  68. T. C. Johnstone, J. J. Wilson, and S. J. Lippard, Inorg. Chem. 52, 12234 (2013).

    Article  Google Scholar 

  69. Q. Wang, M. Zeng, W. Wang, et al., Biochem. Biophys. Res. Commun. 360, 14 (2007).

    Article  Google Scholar 

  70. F. Totsingan and A. J. Bell, Jr., Prot. Sci. 22, 1552 (2013).

    Article  Google Scholar 

  71. S. Knapp, S. Muller, G. Digilio, et al., Biochemistry 43, 11992 (2004).

    Article  Google Scholar 

  72. S. Muller, M. E. Bianchi, and S. Knapp, Biochemistry 40, 10254 (2001).

    Article  Google Scholar 

  73. E. Chikhirzhina, A. Polyanichko, Z. Leonenko, et al., Spectroscopy 24, 361 (2010).

    Article  Google Scholar 

  74. A. M. Polyanichko, S. G. Davydenko, E. V. Chikhirzhina, et al., Tsitologiya 42, 787 (2000).

    Google Scholar 

  75. A. M. Polyanichko, Z. V. Leonenko, D. Cramb, et al., Biophysics (Moscow) 53, 202 (2008).

    Article  Google Scholar 

  76. E. V. Chikhirzhina, A. M. Polyanichko, A. N. Skvor-tsov, et al., Mol. Biol. (Moscow) 36 (3), 412 (2002).

    Article  Google Scholar 

  77. A. M. Polyanichko, E. V. Chikhirzhina, A. N. Skvor-tsov, et al., J. Biomol. Struct. Dyn. 19, 1053 (2002).

    Article  Google Scholar 

  78. A. Polyanichko and H. Wieser, Biopolymers 78, 329 (2005).

    Article  Google Scholar 

  79. E. V. Chikhirzhina, T. Yu. Starkova, A. Beljajev, et al., Int. J. Mol. Sci. 21, 7948 (2020).

    Article  Google Scholar 

  80. E. V. Chikhirzhina, A. M. Polyanichko, and T. Yu. Starkova, Tsitologiya 62, 716 (2020).

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Russian Foundation for Basic Research, projects no. 18-04-01199 (Investigation of the HMGB1 structure depending on the binding target and the role of this protein in cell differentiation) and no. 18-08-01500 (Investigation of the structure of DNA–protein complexes).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to E. V. Chikhirzhina or A. M. Polyanichko.

Ethics declarations

Conflict of interest. The authors declare that they do not have conflicts of interest.

Statement on the welfare of animals. This article does not contain any studies involving animals or human subjects.

Additional information

Translated by D. Timchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chikhirzhina, E.V., Starkova, T.Y. & Polyanichko, A.M. The Structural Organization of the HMGB1 Nuclear Protein and Its Effect on the Formation of Ordered Supramolecular Complexes. BIOPHYSICS 66, 373–378 (2021). https://doi.org/10.1134/S0006350921030039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0006350921030039

Navigation