Skip to main content
Log in

The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area

  • Research article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Purpose

Limited studies have been published on the association between the urinary biomarkers of Polycyclic Aromatic Hydrocarbons (PAHs) and risk of Metabolic Syndromes (MetS) and blood cell levels in adults in the Middle East. The present study aimed to evaluate the exposure to PAHs and the distribution of urinary OH-PAH levels in the general population of Shiraz, Iran, as well as, the association between OH-PAHs and the prevalence of MetS and blood cell levels.

Methods

In this study, 200 participants were randomly selected from the adult population, and their first-morning void urine samples were collected.

Results

The mean concentrations of 1-OHNap, 2-OHNap, 2-OHFlu, 9-OHPhe, and 1-OHP were 639.8, 332.1, 129, 160.3, and 726.9 ng/g creatinine, respectively. The prevalence of MetS was 26% according to the National Cholesterol Education Program Adult Treatment Panel III (NCEP-ATP III) criteria. The results showed that urinary OH-PAHs, especially 1-OHP, were positively and significantly associated with higher waist circumstance (p < 0.001), triglyceride level (p < 0.001), systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.001), number of white blood cells (p = 0.041) and red blood cells (p < 0.001). It also caused lower levels of High Density Lipoprotein-Cholesterol (HDL-C). In conclusion, the results emphasized the adverse health effects of PAHs on human health, including obesity, hypertension, dyslipidemia, and decreased number of blood cells.

Conclusion

Therefore, in order to identify the PAHs sources and to develop methods for decreasing the amount of emissions to the environment, broader researches are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Freire C, Abril A, Fernández M, Ramos R, Estarlich M, Manrique A, et al. Urinary 1-hydroxypyrene and PAH exposure in 4-year-old Spanish children. Sci Total Environ. 2009;407(5):1562–9.

    Article  CAS  Google Scholar 

  2. Ferrari S, Mandel F, Berset J. Quantitative determination of 1-hydroxypyrene in bovine urine samples using high-performance liquid chromatography with fluorescence and mass spectrometric detection. Chemosphere. 2002;47(2):173–82.

    Article  CAS  Google Scholar 

  3. Shahsavani S, Hoseini M, Dehghani M, Fararouei M. Characterisation and potential source identification of polycyclic aromatic hydrocarbons in atmospheric particles (PM10) from urban and suburban residential areas in Shiraz, Iran. Chemosphere. 2017;183:557–64.

    Article  CAS  Google Scholar 

  4. Chou C-W, Chen Y-Y, Wang C-C, Kao T-W, Wu C-J, Chen Y-J, Zhou YC, Chen WL. Urinary biomarkers of polycyclic aromatic hydrocarbons and the association with hearing threshold shifts in the United States adults. Environ Sci Pollut Res. 2020;27(1):562–70.

    Article  CAS  Google Scholar 

  5. Grainger J, Huang W, Patterson DG Jr, Turner WE, Pirkle J, Caudill SP, Wang RY, Needham LL, Sampson EJ. Reference range levels of polycyclic aromatic hydrocarbons in the US population by measurement of urinary monohydroxy metabolites. Environ Res. 2006;100(3):394–423.

    Article  CAS  Google Scholar 

  6. Ramesh A, Walker SA, Hood DB, Guillén MD, Schneider K, Weyand EH. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int J Toxicol. 2004;23(5):301–33.

    Article  CAS  Google Scholar 

  7. Scinicariello F, Buser MC. Urinary polycyclic aromatic hydrocarbons and childhood obesity: NHANES (2001–2006). Environ Health Perspect. 2014;122(3):299–303.

    Article  CAS  Google Scholar 

  8. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  Google Scholar 

  9. Boström C-E, Gerde P, Hanberg A, Jernström B, Johansson C, Kyrklund T, et al. Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air. Environ Health Perspect. 2002;110(Suppl 3):451.

    Article  Google Scholar 

  10. Araujo JA, Nel AE. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol. 2009;6(1):24.

    Article  Google Scholar 

  11. Singh VK, Patel D, Ram S, Mathur N, Siddiqui M. Blood levels of polycyclic aromatic hydrocarbons in children and their association with oxidative stress indices: an Indian perspective. Clin Biochem. 2008;41(3):152–61.

    Article  CAS  Google Scholar 

  12. Yoon H-S, Lee K-M, Lee K-H, Kim S, Choi K, Kang D. Polycyclic aromatic hydrocarbon (1-OHPG and 2-naphthol) and oxidative stress (malondialdehyde) biomarkers in urine among Korean adults and children. Int J Hyg Environ Health. 2012;215(4):458–64.

    Article  CAS  Google Scholar 

  13. Wang B, Li Z, Ma Y, Qiu X, Ren A. Association of polycyclic aromatic hydrocarbons in housewives' hair with hypertension. Chemosphere. 2016;153:315–21.

    Article  CAS  Google Scholar 

  14. Jung KH, Perzanowski M, Rundle A, Moors K, Yan B, Chillrud SN, Whyatt R, Camann D, Perera FP, Miller RL. Polycyclic aromatic hydrocarbon exposure, obesity and childhood asthma in an urban cohort. Environ Res. 2014;128:35–41.

    Article  CAS  Google Scholar 

  15. Hou J, Sun H, Huang X, Zhou Y, Zhang Y, Yin W, Xu T, Cheng J, Chen W, Yuan J. Exposure to polycyclic aromatic hydrocarbons and central obesity enhanced risk for diabetes among individuals with poor lung function. Chemosphere. 2017;185:1136–43.

    Article  CAS  Google Scholar 

  16. Shahsavani S, Dehghani M, Hoseini M, Fararouei M. Biological monitoring of urinary 1-hydroxypyrene by PAHs exposure among primary school students in Shiraz, Iran. Int Arch Occup Environ Health. 2017;90(2):179–87.

    Article  CAS  Google Scholar 

  17. Freire C, Ramos R, Lopez-Espinosa M-J, Díez S, Vioque J, Ballester F, Fernández MF. Hair mercury levels, fish consumption, and cognitive development in preschool children from Granada, Spain. Environ Res. 2010;110(1):96–104.

    Article  CAS  Google Scholar 

  18. Rafiee A, Delgado-Saborit JM, Gordi E, Quémerais B, Moghadam VK, Lu W, et al. Use of urinary biomarkers to characterize occupational exposure to BTEX in healthcare waste autoclave operators. Sci Total Environ. 2018;631:857–65.

    Article  Google Scholar 

  19. Rafiee A, Delgado-Saborit JM, Sly PD, Amiri H, Hoseini M. Lifestyle and occupational factors affecting exposure to BTEX in municipal solid waste composting facility workers. Sci Total Environ. 2019;656:540–6.

    Article  CAS  Google Scholar 

  20. Faridi S, Naddafi K, Kashani H, Nabizadeh R, Alimohammadi M, Momeniha F, et al. Bioaerosol exposure and circulating biomarkers in a panel of elderly subjects and healthy young adults. Sci Total Environ. 2017;593:380–9.

    Article  Google Scholar 

  21. DHHS U. Toxicological profile for polycyclic aromatic hydrocarbons. Agency for Toxic Substances and Disease Registry, Atlanta. 1995.

  22. Björkman L, Lundekvam BF, Lægreid T, Bertelsen BI, Morild I, Lilleng P, et al. Mercury in human brain, blood, muscle and toenails in relation to exposure: an autopsy study. Environ Health. 2007;6(1):1–14.

    Article  Google Scholar 

  23. Esteban M, Castaño A. Non-invasive matrices in human biomonitoring: a review. Environ Int. 2009;35(2):438–49.

    Article  CAS  Google Scholar 

  24. Zhang H, Chai Z, Sun H. Human hair as a potential biomonitor for assessing persistent organic pollutants. Environ Int. 2007;33(5):685–93.

    Article  CAS  Google Scholar 

  25. Alonso E, Cambra K, Martinez T. Lead and cadmium exposure from contaminated soil among residents of a farm area near an industrial site. Archives of Environmental Health: An International Journal. 2001;56(3):278–82.

    Article  CAS  Google Scholar 

  26. Nakao T, Aozasa O, Ohta S, Miyata H. Survey of human exposure to PCDDs, PCDFs, and coplanar PCBs using Hairas an indicator. Arch Environ Contam Toxicol. 2005;49(1):124–30.

    Article  CAS  Google Scholar 

  27. Schummer C, Appenzeller BM, Millet M, Wennig R. Determination of hydroxylated metabolites of polycyclic aromatic hydrocarbons in human hair by gas chromatography–negative chemical ionization mass spectrometry. J Chromatogr A. 2009;1216(32):6012–9.

    Article  CAS  Google Scholar 

  28. Smolders R, Schramm K-W, Nickmilder M, Schoeters G. Applicability of non-invasively collected matrices for human biomonitoring. Environ Health. 2009;8(1):8.

    Article  Google Scholar 

  29. Ciarrocca M, Rosati MV, Tomei F, Capozzella A, Andreozzi G, Tomei G, Bacaloni A, Casale T, Andrè JC, Fioravanti M, Cuartas MF, Caciari T. Is urinary 1-hydroxypyrene a valid biomarker for exposure to air pollution in outdoor workers? A meta-analysis. J Expo Sci Environ Epidemiol. 2014;24(1):17–26.

    Article  CAS  Google Scholar 

  30. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12.

    Article  Google Scholar 

  31. Wang Y, Mi J, Shan X, Wang QJ, Ge K. Is China facing an obesity epidemic and the consequences? The trends in obesity and chronic disease in China. Int J Obes. 2007;31(1):177–88.

    Article  CAS  Google Scholar 

  32. Delavari A, Forouzanfar MH, Alikhani S, Sharifian A, Kelishadi R. First nationwide study of the prevalence of the metabolic syndrome and optimal cutoff points of waist circumference in the Middle East: the national survey of risk factors for noncommunicable diseases of Iran. Diabetes Care. 2009;32(6):1092–7.

    Article  Google Scholar 

  33. Sharifi F, Mousavinasab S, Saeini M, Dinmohammadi M. Prevalence of metabolic syndrome in an adult urban population of the west of Iran. Exp Diabetes Res. 2009;2009:1–5.

    Article  Google Scholar 

  34. Expert Panel on Detection E. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA. 2001;285(19):2486.

  35. Poursafa P, Dadvand P, Amin MM, Hajizadeh Y, Ebrahimpour K, Mansourian M, Pourzamani H, Sunyer J, Kelishadi R. Association of polycyclic aromatic hydrocarbons with cardiometabolic risk factors and obesity in children. Environ Int. 2018;118:203–10.

    Article  CAS  Google Scholar 

  36. Stallings-Smith S, Mease A, Johnson TM, Arikawa AY. Exploring the association between polycyclic aromatic hydrocarbons and diabetes among adults in the United States. Environ Res. 2018;166:588–94.

    Article  CAS  Google Scholar 

  37. Bangia KS, Symanski E, Strom SS, Bondy M. A cross-sectional analysis of polycyclic aromatic hydrocarbons and diesel particulate matter exposures and hypertension among individuals of Mexican origin. Environ Health. 2015;14(1):51.

    Article  Google Scholar 

  38. Hu S-W, Chan Y-J, Hsu H-T, Wu K-Y, ChangChien G-P, Shie R-H, Chan CC. Urinary levels of 1-hydroxypyrene in children residing near a coal-fired power plant. Environ Res. 2011;111(8):1185–91.

    Article  CAS  Google Scholar 

  39. Hemat H, Wittsiepe J, Wilhelm M, Müller J, Göen T. High levels of 1-hydroxypyrene and hydroxyphenanthrenes in urine of children and adults from Afghanistan. J Expo Sci Environ Epidemiol. 2012;22(1):46–51.

    Article  CAS  Google Scholar 

  40. Cavanagh J-AE, Brown L, Trought K, Kingham S, Epton MJ. Elevated concentrations of 1-hydroxypyrene in schoolchildren during winter in Christchurch, New Zealand. Sci Total Environ. 2007;374(1):51–9.

    Article  CAS  Google Scholar 

  41. Lee M-S, Eum K-D, Lee K, Kim H, Paek D. Seasonal and regional contributors of 1-hydroxypyrene among children near a steel mill. Cancer Epidemiol Prev Biomark. 2009;18(1):96–101.

    Article  CAS  Google Scholar 

  42. Abdel-Shafy HI, Mansour MS. A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet. 2016;25(1):107–23.

    Article  Google Scholar 

  43. Control CD. Prevention. National health and nutrition examination survey (nhanes): anthropometry procedures manual. Centers for Disease Control and Prevention: Atlanta; 2007.

    Google Scholar 

  44. Jeng HA, Pan C-H. 1-Hydroxypyrene as a biomarker for environmental health. General Methods in Biomarker Research and their Applications. 2014:1–15.

  45. Alshaarawy O, Elbaz HA, Andrew ME. The association of urinary polycyclic aromatic hydrocarbon biomarkers and cardiovascular disease in the US population. Environ Int. 2016;89:174–8.

    Article  Google Scholar 

  46. Koukoulakis K, Kanellopoulos P, Chrysohou E, Koukoulas V, Minaidis M, Maropoulos G, et al. Leukemia and PAHs levels in human blood serum: preliminary results from an adult cohort in Greece. Atmos Pollut Res. 2020;11:1552–65.

    Article  CAS  Google Scholar 

  47. Motorykin O, Santiago-Delgado L, Rohlman D, Schrlau JE, Harper B, Harris S, Harding A, Kile ML, Massey Simonich SL. Metabolism and excretion rates of parent and hydroxy-PAHs in urine collected after consumption of traditionally smoked salmon for native American volunteers. Sci Total Environ. 2015;514:170–7.

    Article  CAS  Google Scholar 

  48. Hoseini M, Nabizadeh R, Delgado-Saborit JM, Rafiee A, Yaghmaeian K, Parmy S, Faridi S, Hassanvand MS, Yunesian M, Naddafi K. Environmental and lifestyle factors affecting exposure to polycyclic aromatic hydrocarbons in the general population in a middle eastern area. Environ Pollut. 2018;240:781–92.

    Article  CAS  Google Scholar 

  49. Hou J, Sun H, Xiao L, Zhou Y, Yin W, Xu T, Cheng J, Chen W, Yuan J. Combined effect of urinary monohydroxylated polycyclic aromatic hydrocarbons and impaired lung function on diabetes. Environ Res. 2016;148:467–74.

    Article  CAS  Google Scholar 

  50. Yin W, Hou J, Xu T, Cheng J, Li P, Wang L, et al. Obesity mediated the association of exposure to polycyclic aromatic hydrocarbon with risk of cardiovascular events. Sci Total Environ. 2018;616:841–54.

    Article  Google Scholar 

  51. Huo X, Wu Y, Xu L, Zeng X, Qin Q, Xu X. Maternal urinary metabolites of PAHs and its association with adverse birth outcomes in an intensive e-waste recycling area. Environ Pollut. 2019;245:453–61.

    Article  CAS  Google Scholar 

  52. Fan R, Wang D, Mao C, Ou S, Lian Z, Huang S, Lin Q, Ding R, She J. Preliminary study of children's exposure to PAHs and its association with 8-hydroxy-2′-deoxyguanosine in Guangzhou, China. Environ Int. 2012;42:53–8.

    Article  CAS  Google Scholar 

  53. Petchpoung K, Kaojarern S, Yoovathaworn K, Sura T, Sirivarasai J. The influence of metabolic gene polymorphisms on urinary 1-hydroxypyrene concentration in Thai bus drivers. Environ Toxicol Pharmacol. 2011;31(1):160–4.

    Article  CAS  Google Scholar 

  54. Health UDo, Services H. Environmental Protection Agency. Respiratory health effects of passive smoking: lung cancer and other disorders (Smoking and Tobacco Control Monograph 4): NIH publication. 1993;2:71–9.

  55. Talaska G, Thoroman J, Schuman B, Käfferlein HU. Biomarkers of polycyclic aromatic hydrocarbon exposure in European coke oven workers. Toxicol Lett. 2014;231(2):213–6.

    Article  CAS  Google Scholar 

  56. Yang J, Liu Y, Zhang H, Zhang H, Wang W, Fan Y. Urinary 1-hydroxypyrene and smoking are determinants of LINE-1 and AhRR promoter methylation in coke oven workers. Mutat Res/Genet Toxicol Environ Mutagen. 2018;826:33–40.

    Article  CAS  Google Scholar 

  57. Chen Y-T, Huang Y-K, Luvsan M-E, Gombojav E, Ochir C, Bulgan J, Chan CC. The influence of season and living environment on children's urinary 1-hydroxypyrene levels in Ulaanbaatar, Mongolia. Environ Res. 2015;137:170–5.

    Article  CAS  Google Scholar 

  58. Alghamdi MA, Alam MS, Stark C, Mohammed N, Harrison RM, Shamy M, Khoder MI, Shabbaj II, Göen T. Urinary metabolites of polycyclic aromatic hydrocarbons in Saudi Arabian schoolchildren in relation to sources of exposure. Environ Res. 2015;140:495–501.

    Article  CAS  Google Scholar 

  59. Gorji ME, Ahmadkhaniha R, Moazzen M, Yunesian M, Azari A, Rastkari N. Polycyclic aromatic hydrocarbons in Iranian Kebabs. Food Control. 2016;60:57–63.

    Article  CAS  Google Scholar 

  60. Li Y, Jia Z, Wijesiri B, Song N, Goonetilleke A. Influence of traffic on build-up of polycyclic aromatic hydrocarbons on urban road surfaces: a Bayesian network modelling approach. Environ Pollut. 2018;237:767–74.

    Article  CAS  Google Scholar 

  61. Amin MM, Ebrahimpour K, Parastar S, Shoshtari-Yeganeh B, Hashemi M, Mansourian M, Poursafa P, Fallah Z, Rafiei N, Kelishadi R. Association of urinary concentrations of phthalate metabolites with cardiometabolic risk factors and obesity in children and adolescents. Chemosphere. 2018;211:547–56.

    Article  CAS  Google Scholar 

  62. Viguerie N, Millet L, Avizou S, Vidal H, Larrouy D, Langin D. Regulation of human adipocyte gene expression by thyroid hormone. J Clin Endocrinol Metab. 2002;87(2):630–4.

    Article  CAS  Google Scholar 

  63. Guo Y, Tong S, Zhang Y, Barnett AG, Jia Y, Pan X. The relationship between particulate air pollution and emergency hospital visits for hypertension in Beijing, China. Sci Total Environ. 2010;408(20):4446–50.

    Article  CAS  Google Scholar 

  64. Trasande L, Urbina EM, Khoder M, Alghamdi M, Shabaj I, Alam MS, Harrison RM, Shamy M. Polycyclic aromatic hydrocarbons, brachial artery distensibility and blood pressure among children residing near an oil refinery. Environ Res. 2015;136:133–40.

    Article  CAS  Google Scholar 

  65. Ranjbar M, Rotondi MA, Ardern CI, Kuk JL. Urinary biomarkers of polycyclic aromatic hydrocarbons are associated with cardiometabolic health risk. PLoS One. 2015;10(9):e0137536.

    Article  Google Scholar 

  66. O’Neill MS, Diez-Roux AV, Auchincloss AH, Shen M, Lima JA, Polak JF, Barr RG, Kaufman J, Jacobs DR Jr. Long-term exposure to airborne particles and arterial stiffness: the multi-ethnic study of atherosclerosis (MESA). Environ Health Perspect. 2011;119(6):844–51.

    Article  Google Scholar 

  67. Legro RS, Azziz R, Ehrmann D, Fereshetian AG, O’Keefe M, Ghazzi MN, et al. Minimal response of circulating lipids in women with polycystic ovary syndrome to improvement in insulin sensitivity with troglitazone. Obstetl Gynecol Survey. 2004;59(8):595–7.

    Google Scholar 

  68. Patel CJ, Cullen MR, Ioannidis JP, Butte AJ. Systematic evaluation of environmental factors: persistent pollutants and nutrients correlated with serum lipid levels. Int J Epidemiol. 2012;41(3):828–43.

    Article  Google Scholar 

  69. Yin F, Lawal A, Ricks J, Fox JR, Larson T, Navab M, Fogelman AM, Rosenfeld ME, Araujo JA. Diesel exhaust induces systemic lipid peroxidation and development of dysfunctional pro-oxidant and pro-inflammatory high-density lipoprotein. Arterioscler Thromb Vasc Biol. 2013;33(6):1153–61.

    Article  CAS  Google Scholar 

  70. Irigaray P, Ogier V, Jacquenet S, Notet V, Sibille P, Méjean L, et al. Benzo [a] pyrene impairs β-adrenergic stimulation of adipose tissue lipolysis and causes weight gain in mice: a novel molecular mechanism of toxicity for a common food pollutant. FEBS J. 2006;273(7):1362–72.

    Article  CAS  Google Scholar 

  71. Hu H, Kan H, Kearney GD, Xu X. Associations between exposure to polycyclic aromatic hydrocarbons and glucose homeostasis as well as metabolic syndrome in nondiabetic adults. Sci Total Environ. 2015;505:56–64.

    Article  CAS  Google Scholar 

  72. Ahmadiraad H, Hemmati M, Mahmodi M, SayadiAnari A, Mirzaee M, Khoshdel A, et al. Evaluating blood parameters, P53, and IL6 in personnel of copper complex: a comparison with control group. J Fasa Univ Med Sci. 2016;5(4):460–9.

    Google Scholar 

  73. Lee K-M, Ward MH, Han S, Ahn HS, Kang HJ, Choi HS, Shin HY, Koo HH, Seo JJ, Choi JE, Ahn YO, Kang D. Paternal smoking, genetic polymorphisms in CYP1A1 and childhood leukemia risk. Leuk Res. 2009;33(2):250–8.

    Article  CAS  Google Scholar 

  74. Liu D, Chen Y, Sun P, Bai W, Gao A. STAT3 methylation in white blood cells as a novel sensitive biomarker for the toxic effect of low-dose benzene exposure. Toxicol Res. 2016;5(3):800–7.

    Article  CAS  Google Scholar 

  75. Koh D-H, Jeon H-K, Lee S-G, Ryu H-W. The relationship between low-level benzene exposure and blood cell counts in Korean workers. Occup Environ Med. 2015;72(6):421–7.

    Article  Google Scholar 

  76. Angelini S, Maffei F, Bermejo JL, Ravegnini G, L’Insalata D, Cantelli-Forti G, Violante FS, Hrelia P. Environmental exposure to benzene, micronucleus formation and polymorphisms in DNA-repair genes: a pilot study. Mutat Res/Genet Toxicol Environ Mutagen. 2012;743(1–2):99–104.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This article was extracted from the thesis written by Mrs. Samaneh Shahsavani, PhD candidate of Environmental Health engineering. The authors would like to thank the Research Vice-chancellor of Shiraz University of Medical Sciences for financially supporting the research (Proposal No. 19157). They would also like to appreciate Ms. A. Keivanshekouh at the Research Improvement Center of Shiraz University of Medical Sciences for improving the use of English in the manuscript.

Code availability

SPSS version 21 and R software package for Windows were used for all analyses.

Funding

Research Vice-chancellor of Shiraz University of Medical Sciences (Proposal No. 19157).

Author information

Authors and Affiliations

Authors

Contributions

Samaneh Shahsavani: Data curation, Writing- Original draft preparation, Writing-Reviewing and Editing.

Mansooreh Dehghani: Supervision, Conceptualization, Reviewing and Editing, Project administration.

Mohammad Hoseini: Supervision, Methodology, Reviewing and Editing, Project administration.

Mohammad Fararouei: Software, Validation.

Mahmood Soveid: Investigation.

Corresponding authors

Correspondence to Mohammad Hoseini or Mansooreh Dehghani.

Ethics declarations

Ethics approval

The Ethics Committee of Shiraz University of Medical Sciences, Shiraz, Iran, approved the research (ethical code: ir.sums.rec.1397.157).

Consent to participate

All of the authors have read and approved the paper and they are consent to participate.

Consent for publication

All of the authors have read and approved the paper and they are consent to publication.

Conflicts of interest/competing interests

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahsavani, S., Fararouei, M., Soveid, M. et al. The association between the urinary biomarkers of polycyclic aromatic hydrocarbons and risk of metabolic syndromes and blood cell levels in adults in a Middle Eastern area. J Environ Health Sci Engineer 19, 1667–1680 (2021). https://doi.org/10.1007/s40201-021-00722-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40201-021-00722-w

Keywords

Navigation