Skip to main content
Log in

Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We present the modeling of a porous core dispersion flatten photonic crystal fiber (PCF) for the fruitful transmission of THz signals. The model comprises only rectangular holes in both core and cladding areas. The model is numerically studied through simulation employing the finite element method (FEM)-based software. Simulation results disclose an insignificant amount of confinement loss (CL) of 8.01 × 10–5 cm−1 at 1.1 THz in the x-polarization mode. Besides, the effective material loss (EML) is only 2.2 × 10–3 cm−1 at the point. These values ensure a negligible amount of losses present at the modeled waveguide. The model offers a high numerical aperture. The power fraction for this model is 45% in the x-polarization mode at 1.1 THz. One of the splendid properties of the presented model is the ultra-flatten dispersion of approximately ± 0.004 ps/THz/cm, which ensures an insignificant amount of pulse broadening while applying this model in communication fields. The simple structure involving rectangles as well as desired values for optical parameters enhance the fruitfulness and fabrication feasibility of the presented THz waveguide. Thereby, the proposed sensor offers compound features, for instance, low CL, low EML, high NA, high power fraction, and flatten dispersion simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Abbott, D., Zhang, X.-C.: Special issue on T-ray imaging, sensing, and retection. Proc. IEEE 95(8), 1509–1513 (2007)

    Article  Google Scholar 

  2. Sultana, J., Islam, M.S., Islam, M., Abbott, D.: High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications. Electron. Lett. 54(2), 61–62 (2017)

    Article  ADS  Google Scholar 

  3. Woodward, R., Wallace, V., Arnone, D., Linfield, E., Pepper, M.: Terahertz pulsed imaging of skin cancer in the time and frequency domain. J. Biol. Phys. 29(2–3), 257–259 (2003)

    Article  Google Scholar 

  4. Yu, C., Fan, S., Sun, Y., Pickwell-MacPherson, E.: The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant. Imaging Med. Surg. 2(1), 33 (2012)

    Google Scholar 

  5. Withayachumnankul, W., Png, G.M., Yin, X., Atakaramians, S., Jones, I., Lin, H., Ung, B.S.Y., Balakrishnan, J., Ng, B.W.-H., Ferguson, B.: T-ray sensing and imaging. Proc. IEEE 95(8), 1528–1558 (2007)

    Article  Google Scholar 

  6. Islam, M.S., Sultana, J., Ahmed, K., Islam, M.R., Dinovitser, A., Ng, B.W.-H., Abbott, D.: A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime. IEEE Sens. J. 18(2), 575–582 (2017)

    Article  ADS  Google Scholar 

  7. Kawase, K., Ogawa, Y., Watanabe, Y., Inoue, H.: Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt. Express 11(20), 2549–2554 (2003)

    Article  ADS  Google Scholar 

  8. Nagatsuma, T., Ducournau, G., Renaud, C.C.: Advances in terahertz communications accelerated by photonics. Nat. Photonics 10(6), 371–379 (2016)

    Article  ADS  Google Scholar 

  9. Islam, M.S., Sultana, J., Rana, S., Islam, M.R., Faisal, M., Kaijage, S.F., Abbott, D.: Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission. Opt. Fiber Technol. 34, 6–11 (2017)

    Article  ADS  Google Scholar 

  10. Mizuno, M., Fukunaga, K., Saito, S., Hosako, I.: Analysis of calcium carbonate for differentiating between pigments using terahertz spectroscopy. J. Eur. Opt. Soc. Rapid Publ. 4, 09044 (2009)

    Article  Google Scholar 

  11. Ahmed, K., Chowdhury, S., Paul, B.K., Islam, M.S., Sen, S., Islam, M.I., Asaduzzaman, S.: Ultrahigh birefringence, ultralow material loss porous core single-mode fiber for terahertz wave guidance. Appl. Opt. 56(12), 3477–3483 (2017)

    Article  ADS  Google Scholar 

  12. Wang, K., Mittleman, D.M.: Metal wires for terahertz wave guiding. Nature 432(7015), 376–379 (2004)

    Article  ADS  Google Scholar 

  13. Bowden, B., Harrington, J.A., Mitrofanov, O.: Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation. Opt. Lett. 32(20), 2945–2947 (2007)

    Article  ADS  Google Scholar 

  14. Chen, L.-J., Chen, H.-W., Kao, T.-F., Lu, J.-Y., Sun, C.-K.: Low-loss subwavelength plastic fiber for terahertz waveguiding. Opt. Lett. 31(3), 308–310 (2006)

    Article  ADS  Google Scholar 

  15. Skorobogatiy, M., Dupuis, A.: Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance. Appl. Phys. Lett. 90(11), 3514 (2007)

    Article  Google Scholar 

  16. Zhao, G., Ter Mors, M., Wenckebach, T., Planken, P.C.: Terahertz dielectric properties of polystyrene foam. JOSA B 19(6), 1476–1479 (2002)

    Article  ADS  Google Scholar 

  17. Hossain, M.A., Namihira, Y.: Light source design using Kagome-lattice hollow core photonic crystal fibers. Opt. Rev. 21(5), 490–495 (2014)

    Article  Google Scholar 

  18. Pristinski, D., Du, H.: Solid-core photonic crystal fiber as a Raman spectroscopy platform with a silica core as an internal reference. Opt. Lett. 31(22), 3246–3248 (2006)

    Article  ADS  Google Scholar 

  19. Hasan, M.R., Anower, M.S., Islam, M.A., Razzak, S.: Polarization-maintaining low-loss porous-core spiral photonic crystal fiber for terahertz wave guidance. Appl. Opt. 55(15), 4145–4152 (2016)

    Article  ADS  Google Scholar 

  20. Kumar, C.S., Anbazhagan, R.: Investigation on chalcogenide and silica based photonic crystal fibers with circular and octagonal core. AEU Int. J. Electron. Commun. 72, 40–45 (2017)

    Article  Google Scholar 

  21. Podder, E., Hossain, M.B., Jibon, R.H., Bulbul, A.A.-M., Mondal, H.S.: Chemical sensing through photonic crystal fiber: sulfuric acid detection. Front. Optoelectron. 12(4), 372–381 (2019)

    Article  Google Scholar 

  22. Kumar, P., Kumar, V., Roy, J.S.: Design of quad core photonic crystal fibers with flattened zero dispersion. AEU Int. J. Electron. Commun. 98, 265–272 (2019)

    Article  Google Scholar 

  23. Hossain, M.B., Bulbul, A.A.-M., Mukit, M.A., Podder, E.: Analysis of optical properties for square, circular and hexagonal photonic crystal fiber. Opt. Photonics J. 7(11), 235–243 (2017)

    Article  ADS  Google Scholar 

  24. Podder, E., Jibon, R.H., Hossain, M.B., Bulbul, A.A.-M., Biswas, S., Kabir, M.A.: Alcohol sensing through photonic crystal fiber at different temperature. Opt. Photonics J. 8(10), 309 (2018)

    Article  ADS  Google Scholar 

  25. Bulbul, A.A.-M., Jibon, R.H., Awal, M.A., Podder, E., Mondal, H.S., Ahmed, M.S., Hossain, M.B., Hasan, M.M., Saha, A.: Toxic chemicals detection using photonic crystal fiber in THz Regime. In: 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp 1–5. IEEE (2020). https://doi.org/10.1109/ICCCNT49239.2020.9225544

  26. Al-Mamun, A.B., Rayhan Habib, J., Sumon Kumar, D., Tonmoy, R., Avijit, M.S., Bellal, M.H.: PCF based formalin detection by exploring the optical properties in THz regime. Nanosci. Nanotechnol. Asia 10, 1–8 (2020). https://doi.org/10.2174/2210681210999200525171303

    Article  Google Scholar 

  27. Dash, J.N., Jha, R.: Highly sensitive side-polished birefringent PCF-based SPR sensor in near IR. Plasmonics 11(6), 1505–1509 (2016). https://doi.org/10.1007/s11468-016-0203-8

    Article  Google Scholar 

  28. Al-Mamun, B.A., Bellal, M.H., Rahul, D., Mahadi, H.: Zeonex-based tetra-rectangular core-photonic crystal fiber for NaCl detection. Nanosci. Nanotechnol. Asia 10, 1–9 (2020). https://doi.org/10.2174/2210681210999200708141725

    Article  Google Scholar 

  29. Jabin, M.A., Ahmed, K., Rana, M.J., Paul, B.K., Luo, Y., Vigneswaran, D.: Titanium-coated dual-core D-shaped SPR-based PCF for hemoglobin sensing. Plasmonics 14(6), 1601–1610 (2019). https://doi.org/10.1007/s11468-019-00961-6

    Article  Google Scholar 

  30. Shanthi, M., Seyezhai, R.: Investigation and performance studies of optical properties of nanocomposite spiral-shaped photonic crystal fiber (S-PCF). Plasmonics 15(2), 525–533 (2020). https://doi.org/10.1007/s11468-019-01066-w

    Article  Google Scholar 

  31. Fan, Z., Li, S., Liu, Q., Chen, H., Wang, X.: Plasmonic broadband polarization splitter based on dual-core photonic crystal fiber with elliptical metallic nanowires. Plasmonics 11(6), 1565–1572 (2016). https://doi.org/10.1007/s11468-016-0211-8

    Article  Google Scholar 

  32. Iqbal, F., Biswas, S., Bulbul, A.A.-M., Rahaman, H., Hossain, B.M., Rahaman, E.M., Awal, A.M.: Alcohol sensing and classification using PCF-based sensor. Sens. Bio Sens. Res. (2020). https://doi.org/10.1016/j.sbsr.2020.100384

    Article  Google Scholar 

  33. Haider, F., Aoni, R.A., Ahmed, R., Chew, W.J., Mahdiraji, G.A.: Alphabetic-core assisted microstructure fiber based plasmonic biosensor. Plasmonics (2020). https://doi.org/10.1007/s11468-020-01220-9

    Article  Google Scholar 

  34. Atakaramians, S., Afshar, S., Nagel, M., Ebendorff-Heidepriem, H., Fischer, B.M., Monro, T.M., Abbott, D.: Experimental investigation of dispersion properties of THz porous fibers. In: 2009 34th International Conference on Infrared, Millimeter, and Terahertz Waves, pp. 1–2. IEEE (2009). https://doi.org/10.1109/ICIMW.2009.5324967

  35. Islam, R., Habib, M.S., Hasanuzzaman, G., Ahmad, R., Rana, S., Kaijage, S.F.: Extremely high-birefringent asymmetric slotted-core photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 27(21), 2222–2225 (2015)

    Article  ADS  Google Scholar 

  36. Wu, Z., Shi, Z., Xia, H., Zhou, X., Deng, Q., Huang, J., Jiang, X., Wu, W.: Design of highly birefringent and low-loss oligoporous-core THz photonic crystal fiber with single circular air-hole unit. IEEE Photonics J. 8(6), 1–11 (2016)

    Google Scholar 

  37. Luo, J., Tian, F., Qu, H., Li, L., Zhang, J., Yang, X., Yuan, L.: Design and numerical analysis of a THz square porous-core photonic crystal fiber for low flattened dispersion, ultrahigh birefringence. Appl. Opt. 56(24), 6993–7001 (2017)

    Article  ADS  Google Scholar 

  38. Hasan, M.I., Razzak, S.A., Hasanuzzaman, G., Habib, M.S.: Ultra-low material loss and dispersion flattened fiber for THz transmission. IEEE Photonics Technol. Lett. 26(23), 2372–2375 (2014)

    Article  ADS  Google Scholar 

  39. Hasanuzzaman, G., Habib, M.S., Razzak, S.A., Hossain, M.A., Namihira, Y.: Low loss single-mode porous-core kagome photonic crystal fiber for THz wave guidance. J. Lightwave Technol. 33(19), 4027–4031 (2015)

    Article  ADS  Google Scholar 

  40. Ali, S., Ahmed, N., Aljunid, S., Ahmad, B.: Ultra-flat low material loss porous core THz waveguide with near zero flat dispersion. Electron. Lett. 52(10), 863–865 (2016)

    Article  ADS  Google Scholar 

  41. Ali, S., Ahmed, N., Aljunid, S., Ahmad, B.: Hybrid porous core low loss dispersion flattened fiber for THz propagation. Photonics Nanostructures Fundam. Appl. 22, 18–23 (2016)

    Article  ADS  Google Scholar 

  42. Hossain, M.M., Talukder, M.A.: Optical magnetism in surface plasmon resonance–based sensors for enhanced performance. Plasmonics 16, 581–588 (2021)

    Article  Google Scholar 

  43. Bulbul, A.A.-M., Imam, F., Awal, M., Mahmud, M.: A novel ultra-low loss rectangle-based porous-core PCF for efficient THz waveguidance: design and numerical analysis. Sensors 20(22), 6500 (2020)

    Article  ADS  Google Scholar 

  44. Bulbul, A.A.-M., Kouzani, A.Z., Mahmud, M., Nahid, A.-A.: Design and numerical analysis of a novel rectangular PCF (R-PCF)-based biochemical sensor (BCS) in the THz Regime. Int. J. Opt. 2021, 5527724 (2021)

    Article  Google Scholar 

  45. Tang, X., Jiang, Y., Sun, B., Chen, J., Zhu, X., Zhou, P., Wu, D., Shi, Y.: Elliptical hollow fiber with inner silver coating for linearly polarized terahertz transmission. IEEE Photonics Technol. Lett. 25(4), 331–334 (2013)

    Article  ADS  Google Scholar 

  46. Woyessa, G., Fasano, A., Markos, C., Stefani, A., Rasmussen, H.K., Bang, O.: Zeonex microstructured polymer optical fiber: fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing. Opt. Mater. Express 7(1), 286–295 (2017)

    Article  ADS  Google Scholar 

  47. Guobin, R., Zhi, W., Shuqin, L., Yan, L., Shuisheng, J.: Full-vectorial analysis of complex refractive-index photonic crystal fibers. Opt. Express 12(6), 1126–1135 (2004)

    Article  ADS  Google Scholar 

  48. Eid, M.M., Rashed, A.N.Z., Bulbul, A.A.-M., Podder, E.: Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 16(3), 717–727 (2021)

    Article  Google Scholar 

  49. Hasanuzzaman, G., Rana, S., Habib, M.S.: A novel low loss, highly birefringent photonic crystal fiber in THz regime. IEEE Photonics Technol. Lett. 28(8), 899–902 (2016)

    Article  ADS  Google Scholar 

  50. Bulbul, A.A.-M., Rashed, A.N.Z., El-Hageen, H.M., Alatwi, A.M.: Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel. Alex. Eng. J. 60(6), 5419–5430 (2021)

    Article  Google Scholar 

  51. Rana, S., Ali, S., Ahmed, N., Islam, R., Aljunid, S.A.: Ultra-high birefringent and dispersion-flattened low loss single-mode terahertz wave guiding. IET Commun. 10(13), 1579–1583 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Deanship of Scientific Research, Taif University Researchers Supporting Project number (TURSP-2020/08), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jibon, R.H., Bulbul, A.AM., Nahid, AA. et al. Design and numerical analysis of a photonic crystal fiber (PCF)-based flattened dispersion THz waveguide. Opt Rev 28, 564–572 (2021). https://doi.org/10.1007/s10043-021-00698-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-021-00698-w

Keywords

Navigation