Skip to main content

Advertisement

Log in

Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility

  • Original Article
  • Published:
Nutrient Cycling in Agroecosystems Aims and scope Submit manuscript

Abstract

Quantifying the fate of nitrogen (N) fertilizer is essential to develop more sustainable agricultural N management practices. However, our understanding of N losses, particularly in low fertility soils remains incomplete. We evaluated the fate and N use efficiency of N fertilizer under different long-term fertilization regimes, i.e., no N; synthetic N; manure plus synthetic N in a calcareous Cambisol in the North China Plain. A standard rate (160 kg N ha−1) of 15 N-labelled urea was applied to the above treatments in summer maize (first crop) and the same amount of unlabelled urea was applied to winter wheat (second crop). We found the manure plus synthetic N treatment had a significantly higher fertilizer N use efficiency (56%) with lower residual fertilizer N in soil (47 kg N ha−1) than the synthetic N treatment (46% and 64 kg N ha−1, respectively), due to the better synchrony of fertilizer N supply and crop demand in the manure plus synthetic N treatment. Surprisingly, compared with the synthetic N treatment, application of N fertilizer to the N-deficient treatment increased fertilizer N use efficiency significantly to 68%, and reduced the residual fertilizer N in soil (31 kg N ha−1). Fertilizer N losses accounted for 11–16% of applied 15N-labelled urea with no significant differences between treatments. We found that fertilizer N use efficiency was increased in the high fertility soil supplied with manure compared with the low fertility soil supplied with synthetic N fertilizer, which emphasized the importance of recycling the manure or crop residues to soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bai ZH, Ma L, Oenema O, Chen Q, Zhang FS (2013) Nitrogen and phosphorus use efficiencies in dairy production in china. J Environ Qual 42:990–1001

    Article  CAS  PubMed  Google Scholar 

  • Booth MS, Stark JM, Rastetter E (2005) Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monogr 75:139–157

    Article  Google Scholar 

  • Bouwman L, Daniel JS, Davidson EA, de Klein C, Holland E, Ju X, Kanter D, Oenema O, Ravishankara A, Skiba UM (2013a) Drawing down N2O to protect climate and the ozone layer. A UNEP Synthesis Report. United Nations Environment Programme (UNEP). https://www.unep.org/resources/report/drawing-down-n2o-protect-climate-and-ozone-layer-unep-synthesis-report. Accessed Nov 2013

  • Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AH, Van Vuuren DP, Willems J, Rufino MC, Stehfest E (2013b) Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci USA 110:20882–20887

    Article  CAS  PubMed  Google Scholar 

  • Brooks PD, Stark JM, McInteer BB, Preston T (1989) Diffusion method to prepare soil extracts for automated nitrogen-15 analysis. Soil Sci Soc Am J 53:1707–1711

    Article  CAS  Google Scholar 

  • Cui ZL, Zhang FS, Chen XP, Dou ZX, Li JL (2010) In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Res 116:140–146

    Article  Google Scholar 

  • Dai SY, Wang J, Cheng Y, Zhang JB, Cai ZC (2017) Effects of long-term fertilization on soil gross N transformation rates and their implications. J Integr Agric 16:2863–2870

    Article  CAS  Google Scholar 

  • Dourado-Neto D, Powlson D, Abu Bakar R, Bacchi OOS, Basanta MV, Cong PT, Keerthisinghe G, Ismaili M, Rahman SM, Reichardt K, Safwat MSA, Sangakkara R, Timm LC, Wang JY, Zagal E, van Kessel C (2010) Multiseason recoveries of organic and inorganic nitrogen-15 in tropical cropping systems. Soil Sci Soc Am J 74:139–152

    Article  CAS  Google Scholar 

  • Du Z, Xiao Y, Qi X, Liu Y, Fan X, Li Z (2018) Peanut-shell biochar and biogas slurry improve soil properties in the north china plain: a four-year field study. Sci Rep 8:13724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • EU Nitrogen Expert Panel (2015) Nitrogen use efficiency (NUE) – an indicator for the utilization of nitrogen in agriculture and food systems. Wageningen University, Alterra, Wageningen, Netherlands

    Google Scholar 

  • FAO (2020) FAO Statistical Databases. Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/faostat/en/#home. Accessed 25 Sept 2020

  • Gao N, Liu Y, Wu H, Zhang P, Yu N, Zhang Y, Zou H, Fan Q, Zhang Y (2017) Interactive effects of irrigation and nitrogen fertilizer on yield, nitrogen uptake, and recovery of two successive Chinese cabbage crops as assessed using 15N isotope. Sci Hortic 215:117–125

    Article  CAS  Google Scholar 

  • Gardner JB, Drinkwater LE (2009) The fate of nitrogen in grain cropping systems: a meta-analysis of N-15 field experiments. Ecol Appl 19:2167–2184

    Article  PubMed  Google Scholar 

  • Hirte J, Leifeld J, Abiven S, Mayer J (2018) Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Res 216:197–208

    Article  Google Scholar 

  • Huang T, Gao B, Christie P, Ju X (2013) Net global warming potential and greenhouse gas intensity in a double-cropping cereal rotation as affected by nitrogen and straw management. Biogeosciences 10:7897–7911

    Article  CAS  Google Scholar 

  • Huang T, Ju X, Yang H (2017) Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management. Sci Rep 7:42247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia SL, Wang XB, Yang YM, Dai K, Meng CX, Zhao QS, Zhang XM, Zhang DC, Feng ZH, Sun YM, Wu XP, Cai DX, Grant C (2011) Fate of labeled urea-N-15 as basal and topdressing applications in an irrigated wheat-maize rotation system in North China Plain: i winter wheat. Nutr Cycling Agroecosyst 90:331–346

    Article  Google Scholar 

  • Ju XT, Christie P (2011) Calculation of theoretical nitrogen rate for simple nitrogen recommendations in intensive cropping systems: a case study on the North China Plain. Field Crops Res 124:450–458

    Article  Google Scholar 

  • Ju XT, Gu BJ (2014) Status-quo, problem and trend of nitrogen fertilization in China. Journal of Plant Nutrition and Fertilizer 20:783–795

    Google Scholar 

  • Ju XT, Gu BJ (2017) Indexes of nitrogen management. Acta Pedol Sin 54:281–296

    Google Scholar 

  • Ju XT, Zhang C (2017) Nitrogen cycling and environmental impacts in upland agricultural soils in North China: a review. J Integr Agric 16:2848–2862

    Article  CAS  Google Scholar 

  • Ju XT, Xing GX, Chen XP, Zhang SL, Zhang LJ, Liu XJ, Cui ZL, Yin B, Christie P, Zhu ZL, Zhang FS (2009) Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proc Natl Acad Sci USA 106:3041–3046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lazcano C, Gomez-Brandon M, Revilla P, Dominguez J (2013) Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function. Biol Fertility Soils 49:723–733

    Article  CAS  Google Scholar 

  • Li F, Chen L, Zhang J, Yin J, Huang S (2017) Bacterial community structure after long-term organic and inorganic fertilization reveals important associations between soil nutrients and specific taxa involved in nutrient transformations. Front Microbiol 8:187

    PubMed  PubMed Central  Google Scholar 

  • Li Z, Tian D, Wang B, Wang J, Wang S, Chen HYH, Xu X, Wang C, He N, Niu S (2019) Microbes drive global soil nitrogen mineralization and availability. Global Change Biol 25:1078–1088

    Article  Google Scholar 

  • Li Z, Zeng Z, Tian D, Wang J, Fu Z, Zhang F, Zhang R, Chen W, Luo Y, Niu S (2020) Global patterns and controlling factors of soil nitrification rate. Global Change Biol 26:4147–4157

    Article  Google Scholar 

  • Liang B, Yang XY, Murphy DV, He XH, Zhou JB (2013) Fate of 15N-labeled fertilizer in soils under dryland agriculture after 19 years of different fertilizations. Biol Fertility Soils 49:977–986

    Article  CAS  Google Scholar 

  • Liang Z, Chen S, Yang Y, Zhou Y, Shi Z (2019) High-resolution three-dimensional mapping of soil organic carbon in China: effects of SoilGrids products on national modeling. Sci Total Environ 685:480–489

    Article  CAS  PubMed  Google Scholar 

  • López-Bellido L, López-Bellido RJ, Redondo R (2005) Nitrogen efficiency in wheat under rainfed Mediterranean conditions as affected by split nitrogen application. Field Crops Res 94:86–97

    Article  Google Scholar 

  • Lu RK (2000) Analytical methods of soil agrochemistry. China Agricultural Science Technology Publishing House, Beijing, China

    Google Scholar 

  • Maillard É, Angers DA (2014) Animal manure application and soil organic carbon stocks: a meta-analysis. Global Change Biol 20:666–679

    Article  Google Scholar 

  • Murphy DV, Cookson WR, Braimbridge M, Marschner P, Jones DL, Stockdale EA, Abbott LK (2011) Relationships between soil organic matter and the soil microbial biomass (size, functional diversity, and community structure) in crop and pasture systems in a semi-arid environment. Soil Res 49:582–594

    Article  CAS  Google Scholar 

  • Oldroyd GED, Leyser O (2020) A plant’s diet, surviving in a variable nutrient environment. Science 368:45

  • Powlson DS, Pruden G, Johnston AE, Jenkinson DS (1986) The nitrogen cycle in the Broadbalk Wheat Experiment - recovery and losses of 15N-labeled fertilizer applied in spring and inputs of nitrogen from the atmosphere. J Agric Sci 107:591–609

    Article  CAS  Google Scholar 

  • Powlson DS, Bhogal A, Chambers BJ, Coleman K, Macdonald AJ, Goulding KWT, Whitmore AP (2012) The potential to increase soil carbon stocks through reduced tillage or organic material additions in England and Wales: a case study. Agric, Ecosyst Environ 146:23–33

    Article  Google Scholar 

  • Qiu SJ, Ju XT, Lu X, Li L, Ingwersen J, Streck T, Christie P, Zhang FS (2012) Improved nitrogen management for an intensive winter wheat/summer maize double-cropping system. Soil Sci Soc Am J 76:286–297

    Article  CAS  Google Scholar 

  • Quan Z, Li SL, Zhu FF, Zhang LM, He JZ, Wei WX, Fang YT (2018) Fates of 15N-labeled fertilizer in a black soil-maize system and the response to straw incorporation in Northeast China. J Soils Sed 18:1441–1452

    Article  CAS  Google Scholar 

  • Quan Z, Li S, Zhang X, Zhu F, Li P, Sheng R, Chen X, Zhang L-M, He J-Z, Wei W, Fang Y (2020) Fertilizer nitrogen use efficiency and fates in maize cropping systems across China: Field 15N tracer studies. Soil Tillage Res 197:104498

    Article  Google Scholar 

  • Rochette P, Angers DA, Chantigny MH, Gasser MO, MacDonald JD, Pelster DE, Bertrand N (2013) Ammonia volatilization and nitrogen retention: how deep to incorporate urea? J Environ Qual 42:1635–1642

    Article  CAS  PubMed  Google Scholar 

  • Rothamsted Research (2018) Broadbalk soil total nitrogen content. Electronic Rothamsted Archive. http://www.era.rothamsted.ac.uk/dataset/rbk1/01-Nitro1843. Accessed 18 Dec 2017

  • Sebilo M, Mayer B, Nicolardot B, Pinay G, Mariotti A (2013) Long-term fate of nitrate fertilizer in agricultural soils. Proc Natl Acad Sci USA 110:18185–18189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serna-Chavez HM, Fierer N, van Bodegom PM (2013) Global drivers and patterns of microbial abundance in soil. Global Ecol Biogeogr 22:1162–1172

    Article  Google Scholar 

  • Shi ZL, Jing Q, Cai J, Jiang D, Cao WX, Dai TB (2012) The fates of 15N fertilizer in relation to root distributions of winter wheat under different N splits. Eur J Agron 40:86–93

    Article  CAS  Google Scholar 

  • Song X, Ju X, Topp CFE, Rees RM (2019) Oxygen regulates nitrous oxide production directly in agricultural soils. Environ Sci Technol 53:12539–12547

    Article  CAS  PubMed  Google Scholar 

  • Song X-D, Wu H-Y, Ju B, Liu F, Yang F, Li D-C, Zhao Y-G, Yang J-L, Zhang G-L (2020) Pedoclimatic zone-based three-dimensional soil organic carbon mapping in China. Geoderma 363:114145

    Article  CAS  Google Scholar 

  • Springmann M et al (2018) Options for keeping the food system within environmental limits. Nature 562:519–525

    Article  CAS  PubMed  Google Scholar 

  • Stevens WB, Hoeft RG, Mulvaney RL (2005a) Fate of nitirogen-15 in a long-term nitrogen rate study: II. Nitrogen Uptake Efficiency Agron J 97:1046–1053

    CAS  Google Scholar 

  • Stevens WB, Hoeft RG, Mulvaney RL (2005b) Fate of nitrogen-15 in a long-term nitrogen rate study: I. Interactions with Soil Nitrogen Agron J 97:1037–1045

    CAS  Google Scholar 

  • Wang Y, Wang E, Wang D, Huang S, Ma Y, Smith CJ, Wang L (2010) Crop productivity and nutrient use efficiency as affected by long-term fertilisation in North China Plain. Nutr Cycling Agroecosyst 86:105–119

    Article  CAS  Google Scholar 

  • Wang J, Zhu B, Zhang J, Müller C, Cai Z (2015) Mechanisms of soil N dynamics following long-term application of organic fertilizers to subtropical rain-fed purple soil in China. Soil Biol Biochem 91:222–231

    Article  CAS  Google Scholar 

  • Wang X, Zhou W, Liang G, Pei X, Li K (2016) The fate of 15N-labelled urea in an alkaline calcareous soil under different N application rates and N splits. Nutr Cycling Agroecosyst 106:311–324

    Article  CAS  Google Scholar 

  • Wu M, Li G, Li W, Liu J, Liu M, Jiang C, Li Z (2017) Nitrogen Fertilizer deep placement for increased grain yield and nitrogen recovery efficiency in rice grown in subtropical China. Front Plant Sci 8:1227

    Article  PubMed  PubMed Central  Google Scholar 

  • Xin X, Zhang J, Zhu A, Zhang C (2016) Effects of long-term (23 years) mineral fertilizer and compost application on physical properties of fluvo-aquic soil in the North China Plain. Soil Tillage Res 156:166–172

    Article  Google Scholar 

  • Yan M, Pan G, Lavallee JM, Conant RT (2020) Rethinking sources of nitrogen to cereal crops. Global Change Biol 26:191–199

    Article  Google Scholar 

  • Yang L, Zhang X, Ju X (2017) Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci Rep 7:43283

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang SH, Wu HY, Dong Y, Zhao XR, Song XD, Yang JL, Hallett PD, Zhang GL (2020) Deep nitrate accumulation in a highly weathered subtropical critical zone depends on the regolith Structure and planting year. Environ Sci Technol 54:13739–13747

    Article  CAS  PubMed  Google Scholar 

  • Yao YL, Zhang M, Tian YH, Zhao M, Zhang BW, Zeng K, Zhao M, Yin B (2018) Urea deep placement in combination with Azolla for reducing nitrogen loss and improving fertilizer nitrogen recovery in rice field. Field Crops Res 218:141–149

    Article  Google Scholar 

  • Yin X, Zhang LJ, Liu XJ, Xu W, Ni YX, Liu XY (2017) Nitrogen deposition in suburban croplands of hebei plain. Scientia Agricultura Sinica 50:698–710

    Google Scholar 

  • Yousaf M, Li J, Lu J, Ren T, Cong R, Fahad S, Li X (2017) Effects of fertilization on crop production and nutrient-supplying capacity under rice-oilseed rape rotation system. Sci Rep 7:1270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yu C et al (2019) Managing nitrogen to restore water quality in China. Nature 567:516–520

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Ju X, Powlson D, Oenema O, Smith P (2019) Nitrogen surplus benchmarks for controlling n pollution in the main cropping systems of China. Environ Sci Technol 53:6678–6687

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Davidson EA, Zou T, Lassaletta L, Quan Z, Li T, Zhang W (2020) Quantifying Nutrient Budgets for Sustainable Nutrient Management. Global Biogeochem Cycles 34:e2018GB006060

    CAS  Google Scholar 

  • Zhu SS, Vivanco JM, Manter DK (2016) Nitrogen fertilizer rate affects root exudation, the rhizosphere microbiome and nitrogen-use-efficiency of maize. Appl Soil Ecol 107:324–333

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (41830751, 31861133018), and Hainan University Startup Fund (KYQD(ZR)-20098).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaotang Ju.

Ethics declarations

Conflict of interest

The authors report no declarations of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Rees, R.M. & Ju, X. Fate of 15N-labelled urea when applied to long-term fertilized soils of varying fertility. Nutr Cycl Agroecosyst 121, 151–165 (2021). https://doi.org/10.1007/s10705-021-10166-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10705-021-10166-1

Keywords

Navigation