Skip to main content

Advertisement

Log in

Electro-thermal model for lithium-ion battery simulations

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

With the extensive application of lithium batteries and the continuous improvements in battery management systems and other related technologies, the requirements for fast and accurate modeling of lithium batteries are gradually increasing. Temperature plays a vital role in the dynamics and transmission of electrochemical systems. The thermal effect must be considered in battery models. In this paper, a simulation model of a lithium battery with thermal characteristics is established. This thermal model is coupled with a temperature-dependent 2-RC equivalent circuit model to form an electro-thermal model for lithium-ion batteries. The hybrid pulse power characterization test is used to estimate the equivalent circuit parameters. Finally, under NEDC and DST conditions, battery voltage and temperature estimation results of the electro-thermal model are analyzed to verify the correctness and accuracy of the model. The voltage error is within − 0.16 ~ 0.20 V under the NEDC condition. Moreover, under the DST condition, the maximum relative error in the electro-thermal model is within 5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Su, W.C., Rahimi-Eichi, H., Zeng, W.T., Chow, M.Y.: A survey on the electrification of transportation in a smart grid environment. IEEE Trans. Ind. Inform. 8(1), 1–10 (2012)

    Article  Google Scholar 

  2. Amini, M.H., Karabasoglu, O.: Optimal operation of interdependent power systems and electrified transportation networks. Energies 11(1), 196–220 (2018)

    Article  Google Scholar 

  3. Liu, W.X., Niu, S.Y., Xu, H.T.: Optimal planning of battery energy storage considering reliability benefit and operation strategy in active distribution system[J]. J. Mod. Power Syst. Clean Energy 5(2), 177–186 (2017)

    Article  Google Scholar 

  4. Rahimi-eichi, H., Ojha, U., Baronti, F., et al.: Battery management system: an overview of its application in the smart grid and electric vehicles[J]. IEEE Ind. Electron. Mag. 7(2), 4–16 (2013)

    Article  Google Scholar 

  5. Zheng, Y., Dong, Z.Y., Huang, S.L., et al.: Optimal integration of mobile battery energy storage in distribution system with renewable[J]. J. Mod. Power Syst. Clean Energy. 3(4), 589–596 (2015)

    Article  Google Scholar 

  6. Wei, Z.N., Yuan, K.K., Cheng, L.X., et al.: Lithium battery parameter identification based on multiple innovation least squares algorithm[J]. Autom. Electric Power Syst. 43(15), 139–145 (2019)

    Google Scholar 

  7. Waag, W., Kabitz, S., Sauer, D.U.: Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Apply Energy. 102, 885–897 (2013)

    Article  Google Scholar 

  8. Wang, Y., Gao, Q., Wang, G.H., Lu, P.Y., Zhao, M.D., Bao, W.D.: A review on research status and key technologies of battery thermal management and its enhanced safety. Int. J. Energy Res. 42(7), 4008–4033 (2018)

    Article  Google Scholar 

  9. Gomadam, P.M., White, R.E., Weidner, J.W.: Modeling heat conduction in spiral geometries. J. Electrochem. SOC. 150(10), A1339–A1345 (2003)

    Article  Google Scholar 

  10. Rao, Z., Wang, S.: A review of power battery thermal energy management [J]. Renew. Sustain. Energy Rev. 15(8), 4554–4571 (2011)

    Article  Google Scholar 

  11. Seaman, A., Dao, T.S., McPhee, J.: A survey of mathematics-based equivalent-circuit and electrochemical battery models for hybrid and electric vehicle simulation [J]. J. Power Sour. 256, 410–423 (2014)

    Article  Google Scholar 

  12. Wang, Q.Q., Wang, J., Zhao, P.J., et al.: Correlation between the model accuracy and model based SOC estimation[J]. Electrochim. Acta 228, 146–159 (2017)

    Article  Google Scholar 

  13. Zhang, C., Li, K., Deng, J.: Real-time estimation of battery internal temperature based on a simplified thermoelectric model[J]. J. Power Sour. 302, 146–154 (2016)

    Article  Google Scholar 

  14. Chen, Y., Ma, Y., Chen, H.: State of charge and state of health estimation for lithium-ion battery through dual sliding mode observer based on AMESim-Simulink co-simulation[J]. J. Renew. Sustain. Energy. 10(3), 034103 (2018)

    Article  Google Scholar 

  15. Li, X.Y., Xu, J., Hu, Z.H., et al.: The health parameter estimation method for LiFePO4 battery echelon use[J]. Trans. China Electrotech. SOC. 33(1), 9–16 (2018)

    Article  Google Scholar 

  16. Bian, X.L., Wei, Z.B., He, J.T., et al.: A two-step parameter optimization method for low-order model-based state-of-charge estimation[J]. IEEE Trans. Transp. Electrificat. 7(2), 399–409 (2021)

    Article  Google Scholar 

  17. Bian, X.L., Liu, L.C., Yan, J.Y.: A model for state-of-health estimation of lithium ion batteries based on charging profiles[J]. Energy 177, 57–65 (2021)

    Article  Google Scholar 

  18. Bian, X.L., Wei, Z.B., He, J.T., et al.: A novel model-based voltage construction method for robust state-of-health estimation of lithium-ion batteries[J]. IEEE Trans. Ind. Electron. (2021). https://doi.org/10.1109/TIE.2020.3044779

    Article  Google Scholar 

  19. Wang, S.L., Fernandez, C., Yu, C.M., et al.: A novel charged state prediction method of the lithium ion battery packs based on the composite equivalent modeling and improved splice Kalman filtering algorithm[J]. J. Power Sour. 471, 228450 (2020)

    Article  Google Scholar 

  20. Liu, W., Wu, H.S., He, Z.C., et al.: A multistage current charging method for li-ion battery considering balance of internal consumption and charging speed[J]. Trans. China Electrotech. SOC.. 32(9), 112–120 (2017)

    Google Scholar 

  21. He, H.W., Xiong, R., Fa, J.X.: Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach[J]. Energies 4(4), 582–598 (2011)

    Article  Google Scholar 

  22. Jin, L.Q., Sun, Z.X., Liu, Z.R., et al.: Simulation study on stale of charge estimation of lithium-ion battery at different temperatures[J]. Automot. Eng. 41(5), 114–122 (2019)

    Google Scholar 

  23. Liu, X.T., Sun, Z.C., He, Y., et al.: SOC estimation method based on lithium-ion cell model considering environmental factors[J]. J. Southeast Univ. (Natl. Sci. Ed). 47(2), 306–312 (2017)

    Google Scholar 

  24. Hua, Y., Xu, M.: SOC estimation of lithium-ion batteries by model-based filtering method under different thermal conditions[J]. Chin. J. Power Sour. 40(4), 814–817 (2016)

    Google Scholar 

  25. Chin, C., Gao, Z.C., Chiew, J.: Nonlinear temperature-dependent state model of cylindrical LiFePO4 battery for open-circuit voltage, terminal voltage and state-of-charge estimation with extended Kalman filter[J]. Energies 11(9), 2467 (2018)

    Article  Google Scholar 

  26. Chen, Z.Y., Zhang, B., Xiong, R., et al.: Electro-thermal coupling model of lithium-ion batteries under external short circuit[J]. Appl. Energy 293, 116910 (2021)

    Article  Google Scholar 

  27. Ceraolo, M.: New dynamical models of lead-acid batteries. IEEE Trans. Power Syst. 15(4), 1184–1190 (2000)

    Article  Google Scholar 

  28. Barsali, S., Ceraolo, M.: Dynamical models of lead-acid batteries: implementation issues. IEEE Trans. Energy Convers. 17(1), 16–23 (2002)

    Article  Google Scholar 

  29. Pesaran A., Keyser M.: An approach for designing thermal management systems for electric and hybrid vehicle battery packs [C]. In: The Fourth Vehicle Thermal Management Systems Conference and Exhibition London. 1–18 (1999).

  30. Unterrieder C., Lunglmayr M., Marsili S., et al. Battery state-of-charge estimation prototype using EMF voltage prediction[J]. In: Proceedings—IEEE International Symposium on Circuits and Systems. 622–625 (2014).

  31. Wang L.: Research on SOC estimation and power prediction method of lithium battery based on H∞ filter [D]. Tianjin University (2015)

Download references

Acknowledgements

This work was supported by the Key Research and Development Program of Tianjin (No. 20YFYSGX00060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongfeng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Che, Y., Li, H. et al. Electro-thermal model for lithium-ion battery simulations. J. Power Electron. 21, 1530–1541 (2021). https://doi.org/10.1007/s43236-021-00300-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-021-00300-1

Keywords

Navigation