Skip to main content
Log in

Band Gap Mechanism and Design of a New Type of Six-Ligament Chiral Structure

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Achieving low-frequency and wide band gaps with a simple and small structure can be a challenging task. In this paper, a new type of six-ligament chiral structure with simple geometric parameters and smaller geometric dimensions is designed. The side length of the chiral unit cell is only 20 mm. The proposed structure and the design idea it embodies may be of assistance to deal with the challenges mentioned above. A numerical simulation is performed to analyze the relationship between the geometric parameters and band gap characteristics of the structure. Based on this relationship, a geometrically optimized structure is proposed and the simulation results show it has better band gap characteristics which can achieve low-frequency and wide band gaps. Moreover, frequency response analysis is used to verify the accuracy of the simulation. Finally, the band gap mechanism is analyzed by analyzing the mode diagrams of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6

Similar content being viewed by others

References

  1. K. Thomson, K., Kelvin, B.: Baltimore lectures on molecular dynamics and the wave theory of light. http://refhub.elsevier.com/S0264-1275(19)30388-0/rf0030 (1904)

  2. Wu, W.W., Hu, H.X., Qian, G.A., Liao, H.T., Xu, X.Y., Berto, F.: Mechanical design and multifunctional applications of chiral mechanical metamaterials: a review. Mater. Des. 180, 107950 (2019). https://doi.org/10.1016/j.matdes.2019.107950

    Article  Google Scholar 

  3. Kushwaha, M.S.: Classical band structure of periodic elastic composites. Int J Modern Phys B 10(9), 977–1094 (1996). https://doi.org/10.1142/S0217979296000398

    Article  Google Scholar 

  4. Martínez-Sala, R., Sancho, J., Sánchez, J.V., Gómez, V., Llinareset, J., Meseguer, F.: Sound attenuation by sculpture. Nature 378(6554), 241–241 (1995). https://doi.org/10.1038/378241a0

    Article  Google Scholar 

  5. Olsson, R.H., III., El-Kady, I.: Microfabricated phononic crystal devices and applications. Meas. Sci. Technol. 20(1), 012002 (2009). https://doi.org/10.1088/0957-0233/20/1/012002

    Article  Google Scholar 

  6. Sheng, P., Zhang, X.X., Liu, Z., Chan, C.T.: Locally resonant sonic materials. Physica B. 338(1–4), 201–205 (2003). https://doi.org/10.1016/S0921-4526(03)00487-3

    Article  Google Scholar 

  7. Huang, G., L., Liu, X. N., Reynolds, M.: Wave propagation and vibration analysis in two-dimensional elastic chiral metacomposite. Proceedings of SPIE - The International Society for Optical Engineering, 7984. (2011). https://doi.org/10.1117/12.880229

  8. Krushynska, A.O., Kouznetsova, V.G., Geers, M.G.D.: Towards optimal design of locally resonant acoustic metamaterials. J. Mech. Phys. Solids 71, 179–196 (2014). https://doi.org/10.1016/j.jmps.2014.07.004

    Article  Google Scholar 

  9. Bacigalupo, A., Gambarotta, L.: Wave propagation in non-centrosymmetric beam-lattices with lumped masses: discrete and micropolar modeling. Int. J. Solids Struct. (2017). https://doi.org/10.1016/j.ijsolstr.2017.04.010

    Article  MATH  Google Scholar 

  10. Bacigalupo, A., Gambarotta, L.: Dispersive wave propagation in two-dimensional rigid periodic blocky materials with elastic interfaces. J. Mech. Phys. Solids 102, 165–186 (2017). https://doi.org/10.1016/j.jmps.2017.02.006

    Article  MathSciNet  MATH  Google Scholar 

  11. Bacigalupo, A., Gambarotta, L.: A micropolar model for the analysis of dispersive waves in chiral mass-in-mass lattices. Frattura e Integrita Strutturale 8(29), 1–8 (2014). https://doi.org/10.3221/IGF-ESIS.29.01

    Article  Google Scholar 

  12. Prall, D., Lakes, R.S.: Properties of a chiral honeycomb with a Poisson’s ratio of – 1. Int. J. Mech. Sci. 39(3), 305–307 (1997). https://doi.org/10.1016/S0020-7403(96)00025-2

    Article  MATH  Google Scholar 

  13. Spadoni, A.: Dynamic response of chiral truss-core assemblies. J. Intell. Mater. Syst. Struct. 17(11), 941–952 (2006). https://doi.org/10.1177/1045389X06060219

    Article  Google Scholar 

  14. Xu, S.Y., Huang, X.C., Hua, H.X.: Energy band characteristics of chiral structure of six ligament. J. Shanghai Jiao Tong Univ. 47(02), 167–172 (2013)

    Google Scholar 

  15. Liu, X.N., Hu, G.K., Sun, C.T., Huang, G.L.: Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. J. Sound Vib. 330(11), 2536–2553 (2011)

    Article  Google Scholar 

  16. Bacigalupo, A., Lepidi, M., Gnecco, G., Gambarotta, L.: Optimal design of auxetic hexachiral metamaterials with local resonators. Smart Mater. Struct. 25(5), 054009 (2016). https://doi.org/10.1088/0964-1726/25/5/054009

    Article  Google Scholar 

  17. Baravelli, E., Ruzzene, M.: Internally resonating lattices for bandgap generation and low-frequency vibration control. J. Sound Vib. 332(25), 6562–6579 (2013). https://doi.org/10.1016/j.jsv.2013.08.014

    Article  Google Scholar 

  18. Qi, D., Yu, H., He, C., Wu, W., Ma, Y.: Bandgap and wave attenuation mechanisms of innovative reentrant and anti-chiral hybrid auxetic metastructure. Extreme Mech. Lett. 28, 58–68 (2019)

    Article  Google Scholar 

  19. Khelif, A., Adibi, A.: Fundamentals and applications of photonic crystals. National Defense Industry Press, Changsha (2018) ISBN 978–7–118–11447–8

  20. Phani, A.S., Woodhouse, J., Fleck, N.A.: Wave propagation in two-dimensional periodic lattices. J. Acoust. Soc. Am. 119(4), 199–200 (2006). https://doi.org/10.1121/1.2179748

    Article  Google Scholar 

  21. Gao, N. S., Shen, L., Hou, H.: Analysis and application of vibration and noise reduction characteristics of phononic crystal, Northwest University of Technology Press, Xi'an (2017) ISBN 978–7–5612–5724–1

  22. Wen, X. S., Wen, J. H., Yu, D. L., Wang, G., Liu Y. Z., Han, X. Y.: Phononic crystals, National Defense Industry Press, Changsha (2009) ISBN 978–7–118–06342–4

Download references

Funding

This project was supported by the National Natural Science of China (Grant No. 61690222, 12072222, 12021002, 11991032), the State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures (Grant No. SKLTESKF1901), the Aeronautical Science Foundation of China (Grant No. ASFC-201915048001) and the Project of Tianjin Natural Science Foundation (No.18JCQNJC05400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuliang Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, Y., Wang, R., Sun, Y. et al. Band Gap Mechanism and Design of a New Type of Six-Ligament Chiral Structure. Acoust Aust 50, 41–48 (2022). https://doi.org/10.1007/s40857-021-00249-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-021-00249-y

Keywords

Navigation