Skip to main content
Log in

Hyperbranched polyethylenimine–based polymeric nanoparticles: synthesis, properties, and an application in selective response to copper ion

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Hyperbranched polyethylenimines (hPEIs) have diverse biological applications; however, the intrinsic toxicity is a major concern in developing hPEI-based biomaterials. This work reports the synthesis, properties, and an application as a biocompatible hPEI-based material, namely, fluorescent oxidized hPEI polymeric nanoparticles (F-ohPEIs). The synthesis was achieved through oxidation of hPEI with H2O2 and subsequent cross-linking with formaldehyde, imparting to F-ohPEIs’ desired properties such as remarkably reduced positive charge density, hydrolytic degradability, low cytotoxicity, strong fluorescence emission, and stability. Furthermore, as an application, F-ohPEI demonstrated the ability to selectively respond to cupric ion in a wide concentration range of 0.02 ~ 10 μM with a low limit of detection of 0.013 μM. The synthesis strategy along with the F-ohPEI nanoparticles developed in this work is expected to find promising application in fabricating biocompatible hPEI-based biomaterials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jäger M, Schubert S, Ochrimenko S, Fischer D, Schubert US (2012) Branched and linear poly(ethylene imine)-based conjugates: synthetic modification, characterization, and application. Chem Soc Rev 41(13):4755–4767

    Article  Google Scholar 

  2. Lei G, Yang S, Cao R, Zhou P, Peng H, Peng R, Zhang X, Yang Y, Li Y, Wang M, He Y, Zhou L, Du J, Du W, Shi Y, Wu H (2020) In situ preparation of amphibious ZnO quantum dots with blue fluorescence based on hyperbranched polymers and their application in bio-imaging. Polymers 12(1):144

    Article  CAS  Google Scholar 

  3. Tasharrofi N, Kouhkan F, Soleimani M, Soheili ZS, Atyabi F, Javar HA, Dorkoosh FA (2016) Efficient gene delivery to primary human retinal pigment epithelial cells: the innate and acquired properties of vectors. Int J Pharm 518:1–23

    Google Scholar 

  4. Liu SG, Liu T, Li N, Geng S, Lei JL, Li NB, Luo HQ (2017) Polyethylenimine-derived fluorescent nonconjugated polymer dots with reversible dual-signal ph response and logic gate operation. J Phys Chem C 121:6874–6883

    Article  CAS  Google Scholar 

  5. Li JY, Liu Y, Shu QW, Liang JM, Zhang F, Chen XP, Deng XY, Swihart MT, Tan KJ (2017) One-pot hydrothermal synthesis of carbon dots with efficient up and down-converted photoluminescence for sensitive detection of morin in a dual-readout assay. Langmuir 33(4):1043–1050

    Article  CAS  Google Scholar 

  6. Yi P, Shi Y, Chen Z, Chen J, Hou M, Chen Z, Li CW, Yi C (2016) Design of multiple logic gates based on chemically triggered fluorescence switching of functionalized polyethylenimine. ACS Appl Mater Interfaces 8(14):9472–9482

    Article  Google Scholar 

  7. Parhamifar L, Larsen AK, Hunter AC, Andresen TL, Moghimi SM (2010) Polycation cytotoxicity: a delicate matter for nucleic acid therapy-focus on polyethylenimine. Soft Matter 6(17):4001–4009

    Article  CAS  Google Scholar 

  8. Fukumoto Y, Obata Y, Ishibashi K, Tamura N, Kikuchi I, Aoyama K, Hattori Y, Tsuda K, Nakayama Y, Yamaguchi N (2010) Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology  62 (1):73–82.

  9. Petersen H, Fechner PM, Fischer D, Kissel T (2002) Synthesis, characterization, and biocompatibility of polyethylenimine-graft-poly(ethylene glycol) block copolymers. Macromolecules 35(18):6867–6874

    Article  CAS  Google Scholar 

  10. Oskuee RK, Dehshahri A, Shier WT, Ramezani M (2009) Alkylcarboxylate grafting to polyethylenimine: a simple approach to producing a DNA nanocarrier with low toxicity. J Gene Med 11(10):921–932

    Article  CAS  Google Scholar 

  11. Peng Q, Hu C, Cheng J, Zhong Z, Zhuo R (2009) Influence of disulfide density and molecular weight on disulfide cross-linked polyethylenimine as gene vectors. Bioconjugate Chem 20(2):340–346

    Article  CAS  Google Scholar 

  12. Wen Y, Pan S, Luo X, Zhang X, Zhang W, Feng M (2009) A biodegradable low molecular weight polyethylenimine derivative as low toxicity and efficient gene vector. Bioconjugate Chem 20(2):322–332

    Article  CAS  Google Scholar 

  13. Zhao N, Roesler S, Kissel T (2011) Synthesis of a new potential biodegradable disulfide containing poly(ethylene imine)-poly(ethylene glycol) copolymer cross-linked with click cluster for gene delivery. Int J Pharm 411(1–2):197–205

    Article  CAS  Google Scholar 

  14. Englert C, Hartlieb M, Bellstedt P, Kempe K, Yang C, Chu SK, Ke X, Garcı́a JM, Ono RJ, Fevre M, Wojtecki RJ,  Schubert US, Yang YY, Hedrick JL (2015) Enhancing the biocompatibility and biodegradability of linear poly(ethylenimine) through controlled oxidation. Macromolecules 48:7420−7427.

  15. Haas HC, Schuler NW, Macdonald RL (1972) Oxidized polyethylenimine. J Polym Sci Part A: Polym Chem 10(10);3143–3158.

  16. Seow WY, Liang K, Kurisawa M, Hauser CA (2013) Oxidation as a facile strategy to reduce the surface charge and toxicity of polyethyleneimine gene carriers. Biomacromol 14(7):2340–2346

    Article  CAS  Google Scholar 

  17. Mavila S, Eivgi O, Berkovich I, Lemcoff NG (2016) Intramolecular cross-linking methodologies for the synthesis of polymer nanoparticles. Chem Rev 116(3):878

    Article  CAS  Google Scholar 

  18. Shi GL, Na L, Yu L, Bei HK, Geng S, Li NB, Hong QL (2016) pH-mediated fluorescent polymer particles and gel from hyperbranched polyethylenimine and the mechanism of intrinsic fluorescence. Langmuir 32(7):1881–1889

    Article  Google Scholar 

  19. Misra SK, Srivastava I, Tripathi I, Daza EA, Ostadhossein F, Pan D (2017) Macromolecularly ‘caged’ carbon nanoparticles for intracellular trafficking via switchable photo-luminescence. J Am Chem Soc 139(5):1746–1749

    Article  CAS  Google Scholar 

  20. Liu SG, Luo D, Li N, Zhang W, Lei JL, Li NB, Luo HQ (2016) Water-soluble nonconjugated polymer nanoparticles with strong fluorescence emission for selective and sensitive detection of nitro-explosive picric acid in aqueous medium. ACS Appl Mater Interfaces 8(33):21700–21709

    Article  CAS  Google Scholar 

  21. Ma Y, Pan G, Zhang Y, Guo X, Zhang H (2013) Narrowly dispersed hydrophilic molecularly imprinted polymer nanoparticles for efficient molecular recognition in real aqueous samples including river water, milk, and bovine serum. Angew Chem Int. Ed 125(5): 1551–1554.

  22. Lu J, Jia H, Guo L, Zhang G, Cao Y, Yan H, Liu K (2015) Zwitterionic polymeric micelles that undergo a pH-triggered positive charge for enhanced cellular uptake. Eur Polym J 66(7):376–385

    Article  CAS  Google Scholar 

  23. Liu H, Wang H, Yang W, Cheng Y (2012) Disulfide cross-linked low generation dendrimers with high gene transfection efficacy, low cytotoxicity, and low cost. J Am Chem Soc 134(42):17680–17687

    Article  CAS  Google Scholar 

  24. Shao N, Zhang Y, Cheung S, Yang R, Chan W, Mo T, Li K, Liu F (2005) Copper ion-selective fluorescent sensor based on the inner filter effect using a spiropyran derivative. Anal Chem 77(22):7294–7303

    Article  CAS  Google Scholar 

  25. Tang X, Wang Y, Han J, Ni L, Wang L, Li LH, Zhang HQ, Li C, Li J, Li HR (2018) A relay identification fluorescence probe for Fe3+ and phosphate anion and its applications. Spectrochim Acta, Part A 191:172–179

    Article  CAS  Google Scholar 

  26. Jung HS, Kwon PS, Lee JW, Kim JI, Hong CS, Kim JW, Yan S, Lee JY, Lee JH, Joo T (2009) Coumarin-derived Cu(II)-selective fluorescence sensor: synthesis, mechanisms, and applications in living cells. J Am Chem Soc 131(5):2008–2012

    Article  CAS  Google Scholar 

  27. Zong C, Ai K, Zhang G, Li H, Lu L, Chem A (2011) Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+. Anal Chem 83(8):3126

    Article  CAS  Google Scholar 

  28. Lei C, Wang Z, Nie Z, Deng H, Hu H, Huang Y, Yao S (2015) Resurfaced fluorescent protein as a sensing platform for label-free detection of copper(II) ion and acetylcholinesterase activity. Anal Chem 87(3):1974–1980

    Article  CAS  Google Scholar 

  29. Gu B, Ye M, Nie L, Fang Y, Wang Z, Zhang X, Zhang H, Zhou Y, Zhang Q (2017) Organic dye-modified Upconversion nanoparticle as a multi-channel probe to detect Cu2+ in living cells. ACS Appl Mater Interfaces 10(1):1028–1032

    Article  Google Scholar 

  30. Roy D, Chakraborty A, Ghosh R (2017) Coumarin based colorimetric and fluorescence on-off chemosensor for F, CN and Cu2+ ions. Spectrochim Acta Part A Mol Biomol Spectrosc 191:69–78

    Article  Google Scholar 

  31. Shen Y, Zhang X, Zhang C, Zhang Y, Jin J, Li H (2018) A simple fluorescent probe for the fast sequential detection of copper and biothiols based on a benzothiazole derivative. Spectrochim Acta, Part A 191:427–434

    Article  CAS  Google Scholar 

  32. Yao X, Dan Z, Gu T, Hong LL, Wei DY (2018) Highly efficient fluorescence probe for copper (II) ions based on gold nanoclusters supported on wool keratin. J Mater Sci 53(6):4056–4066

    Article  Google Scholar 

Download references

Funding

The authors received financial supports from the Hubei Provincial Natural Science Foundation (2013CFB245).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 516 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhong, J., Wang, B., Sun, K. et al. Hyperbranched polyethylenimine–based polymeric nanoparticles: synthesis, properties, and an application in selective response to copper ion. Colloid Polym Sci 299, 1577–1586 (2021). https://doi.org/10.1007/s00396-021-04885-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04885-8

Keywords

Navigation