Skip to main content
Log in

Peroxidase-like reaction by a synergistic inorganic catalyst colloid: a new method for hydrogen peroxide detecting in air samples

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

A peroxidase-like catalyst of a synergistic inorganic nanocomposite was firstly proposed for the occupational exposure monitoring of H2O2. Nano-zeolite Y (nZY) ion exchange of copper (nZY-Cu) is also used as a peroxidase-like catalyst. In this study, the catalyst component was characterized using X-ray diffraction, BET method, XRF, and scanning electron microscopy. In addition, relative activity was used to show the synergistic peroxidase-like activity of nZY-Cu. Thereafter, the central composite design was applied for the parameter optimization of 3,3′,5,5′-tetramethylbenzidine (TMB) oxidation. However, a method was developed for the TMB-H2O2 reaction using nZY-Cu. The catalytic activity of copper increased in nZY-Cu under the pH of 4.58, with 0.32 mg of catalyst, and TMB concentration of 10.57 μM. Accordingly, a simple and sensitive method was set up for the detection of H2O2 in the air samples, with a linear range of 0.5 to 60 ppm, the detection limit of 0.15 ppm, and a recovery level of 94.13 ± 6.5. The proposed method showed a compatible precision with standard method (OSHAVI-6) according to RSDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Liu J, He B, Chen Q, Li J, Xiong Q, Yue G et al (2016) Direct synthesis of hydrogen peroxide from plasma-water interactions. Sci Rep 6(1):1–7

    Article  Google Scholar 

  2. Dungani R, Owolabi AF, Saurabh CK, Khalil HA, Tahir PM, Hazwan C et al (2017) Preparation and fundamental characterization of cellulose nanocrystal from oil palm fronds biomass. J Polym Environ 25(3):692–700

    Article  CAS  Google Scholar 

  3. Youssef EW, Chukwueke VS, Elsamaloty L, Moawad S, Elsamaloty H (2018) Accidental concentrated hydrogen peroxide ingestion associated with portal venous gas. J Radio Case Rep 12(8):12

    Google Scholar 

  4. Siddique YH, Ara G, Afzal M (2012) Estimation of lipid peroxidation induced by hydrogen peroxide in cultured human lymphocytes. Dose-Response. 10(1):dose-response. 10–002. Siddique

  5. Pham AN, Xing G, Miller CJ, Waite TD (2013) Fenton-like copper redox chemistry revisited: Hydrogen peroxide and superoxide mediation of copper-catalyzed oxidant production. J Catal 301:54–64

    Article  CAS  Google Scholar 

  6. Wang M, Liu Y, Liang Y, Naruse K, Takahashi K (2021) Systematic understanding of pathophysiological mechanisms of oxidative stress-related conditions—diabetes mellitus, cardiovascular diseases, and ischemia–reperfusion injury. Frontiers in Cardiovascular Medicine 8:295

    Google Scholar 

  7. Hydrogen Peroxide: OSHA; 1977 [Available from: https://www.osha.gov/dts/sltc/methods/inorganic/id006/hydrogen_peroxide.html

  8. [Available from: https://www.osha.gov/dts/sltc/methods/validated/1019/1019.pdf

  9. Ajay Piriya VS, Joseph P, Kiruba Daniel SCG, Lakshmanan S, Kinoshita T, Muthusamy S (2017) Colorimetric sensors for rapid detection of various analytes. Mater Sci Eng 78:1231–45

  10. Fu G, Sanjay ST, Zhou W, Brekken RA, Kirken RA, Li X (2018) Exploration of nanoparticle-mediated photothermal effect of TMB-H2O2 colorimetric system and its application in a visual quantitative photothermal immunoassay. Anal Chem 90(9):5930–5937

    Article  CAS  Google Scholar 

  11. Luka G, Nowak E, Kawchuk J, Hoorfar M, Najjaran H (2017) Portable device for the detection of colorimetric assays. R Soc Open Sci 4(11):171025

  12. Masud MK, Na J, Younus M, Hossain MSA, Bando Y, Shiddiky MJ et al (2019) Superparamagnetic nanoarchitectures for disease-specific biomarker detection. Chem Soc Rev 48(24):5717–5751

    Article  CAS  Google Scholar 

  13. Bhattacharjee R, Tanaka S, Moriam S, Masud MK, Lin J, Alshehri SM et al (2018) Porous nanozymes: the peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J Mater Chem B 6(29):4783–4791

    Article  CAS  Google Scholar 

  14. Soda N, Rehm BH, Sonar P, Nguyen N-T, Shiddiky MJ (2019) Advanced liquid biopsy technologies for circulating biomarker detection. J Mater Chem B 7(43):6670–6704

    Article  CAS  Google Scholar 

  15. Qiao F, Chen L, Li X, Li L, Ai S (2014) Peroxidase-like activity of manganese selenide nanoparticles and its analytical application for visual detection of hydrogen peroxide and glucose. Sens Actuators, B Chem 193:255–262

    Article  CAS  Google Scholar 

  16. Xie J, Cao H, Jiang H, Chen Y, Shi W, Zheng H et al (2013) Co3O4-reduced graphene oxide nanocomposite as an effective peroxidase mimetic and its application in visual biosensing of glucose. Anal Chim Acta 796:92–100

    Article  CAS  Google Scholar 

  17. Qiao F, Wang J, Ai S, Li L (2015) As a new peroxidase mimetics: the synthesis of selenium doped graphitic carbon nitride nanosheets and applications on colorimetric detection of H2O2 and xanthine. Sens Actuators, B Chem 216:418–427

    Article  CAS  Google Scholar 

  18. Masud MK, Kim J, Billah MM, Wood K, Shiddiky MJ, Nguyen N-T et al (2019) Nanoarchitectured peroxidase-mimetic nanozymes: mesoporous nanocrystalline α-or γ-iron oxide? J Mater Chem B 7(35):5412–5422

    Article  CAS  Google Scholar 

  19. Lu Q, Deng J, Hou Y, Wang H, Li H, Zhang Y (2015) One-step electrochemical synthesis of ultrathin graphitic carbon nitride nanosheets and their application to the detection of uric acid. Chem Commun 51(61):12251–12253

    Article  CAS  Google Scholar 

  20. Lu J, Xiong Y, Liao C, Ye F (2015) Colorimetric detection of uric acid in human urine and serum based on peroxidase mimetic activity of MIL-53 (Fe). Anal Methods 7(23):9894–9899

    Article  CAS  Google Scholar 

  21. Tanaka S, Masud MK, Kaneti YV, Shiddiky MJ, Fatehmulla A, Aldhafiri AM et al (2019) Enhanced peroxidase mimetic activity of porous iron oxide nanoflakes. ChemNanoMat 5(4):506–513

    Article  CAS  Google Scholar 

  22. Dalui A, Pradhan B, Thupakula U, Khan AH, Kumar GS, Ghosh T et al (2015) Insight into the mechanism revealing the peroxidase mimetic catalytic activity of quaternary CuZnFeS nanocrystals: colorimetric biosensing of hydrogen peroxide and glucose. Nanoscale 7(19):9062–9074

    Article  CAS  Google Scholar 

  23. Ozyigit II, Filiz E, Vatansever R, Kurtoglu KY, Koc I, Öztürk MX et al (2016) Identification and comparative analysis of H2O2-scavenging enzymes (ascorbate peroxidase and glutathione peroxidase) in selected plants employing bioinformatics approaches. Front Plant Sci 7:301

    Article  Google Scholar 

  24. Liu J, Hu X, Hou S, Wen T, Liu W, Zhu X et al (2012) Au@ Pt core/shell nanorods with peroxidase-and ascorbate oxidase-like activities for improved detection of glucose. Sens Actuators, B Chem 166:708–714

    Article  Google Scholar 

  25. Pędziwiatr P (2018) Decomposition of hydrogen peroxide-kinetics and review of chosen catalysts. Acta Innovations 26:45–52

    Article  Google Scholar 

  26. Yu Z, Cai G, Liu X, Tang D (2020) Platinum nanozyme-triggered pressure-based immunoassay using a three-dimensional polypyrrole foam-based flexible pressure sensor. ACS Appl Mater Interfaces 12(36):40133–40140

    Article  CAS  Google Scholar 

  27. Zeng R, Luo Z, Zhang L, Tang D (2018) Platinum nanozyme-catalyzed gas generation for pressure-based bioassay using polyaniline nanowires-functionalized graphene oxide framework. Anal Chem 90(20):12299–12306

    Article  CAS  Google Scholar 

  28. Niu X, Cheng N, Ruan X, Du D, Lin Y (2019) Nanozyme-based immunosensors and immunoassays: recent developments and future trends. J Electrochem Soc 167(3):037508

  29. Shan Z, Lu M, Wang L, MacDonald B, MacInnis J, Mkandawire M et al (2016) Chloride accelerated Fenton chemistry for the ultrasensitive and selective colorimetric detection of copper. Chem Commun 52(10):2087–2090

    Article  CAS  Google Scholar 

  30. Ruan Y-B, Li C, Tang J, Xie J (2010) Highly sensitive naked-eye and fluorescence “turn-on” detection of Cu2+ using Fenton reaction assisted signal amplification. Chem Commun 46(48):9220–9222

    Article  CAS  Google Scholar 

  31. Koohsaryan E, Anbia M (2016) Nanosized and hierarchical zeolites: a short review. Chin J Catal 37(4):447–467

    Article  CAS  Google Scholar 

  32. Kulprathipanja S (2010) Zeolites in industrial separation and catalysis: John Wiley & Sons

  33. Martinez Sanchez C, Pérez Pariente J (2011) Zeolites and ordered porous solids: fundamentals and applications

  34. Rhodes CJ (2010) Properties and applications of zeolites. Sci Prog 93(3):223–284

    Article  CAS  Google Scholar 

  35. Kousha M, Tavakoli S, Daneshvar E, Vazirzadeh A, Bhatnagar A (2015) Central composite design optimization of Acid Blue 25 dye biosorption using shrimp shell biomass. J Mol Liq 207:266–273

    Article  CAS  Google Scholar 

  36. Rai A, Mohanty B, Bhargava R (2015) Modeling and response surface analysis of supercritical extraction of watermelon seed oil using carbon dioxide. Sep Purif Technol 141:354–365

    Article  CAS  Google Scholar 

  37. Manojkumar N, Muthukumaran C, Sharmila G (2020) A comprehensive review on the application of response surface methodology for optimization of biodiesel production using different oil sources. J King Saud Univ

  38. Shahid M, Zhou Y, Tang R-C, Chen G, Wani WA (2017) Colourful and antioxidant silk with chlorogenic acid: process development and optimization by central composite design. Dyes Pigm 138:30–38

    Article  CAS  Google Scholar 

  39. Zendehdel R, Goli F, Hajibabaei M (2020) Comparing the microbial inhibition of nanofibres with multi-metal ion exchanged nano-zeolite Y in air sampling. J Appl Microbiol 128(1):202–208

    Article  CAS  Google Scholar 

  40. Guo J, Wang Y, Zhao M (2018) 3D flower-like ferrous (II) phosphate nanostructures as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose at nanomolar level. Talanta 182:230–240

    Article  CAS  Google Scholar 

  41. Singh L, Rekha P, Chand S (2016) Cu-impregnated zeolite Y as highly active and stable heterogeneous Fenton-like catalyst for degradation of Congo red dye. Sep Purif Technol 170:321–336

    Article  CAS  Google Scholar 

  42. Gao L, Zhuang J, Nie L, Zhang J, Zhang Y, Gu N et al (2007) Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat Nanotechnol 2(9):577–583

    Article  CAS  Google Scholar 

  43. Dong Y-L, Zhang H-G, Rahman ZU, Su L, Chen X-J, Hu J, et al (2012) Graphene oxide–Fe 3 O 4 magnetic nanocomposites with peroxidase-like activity for colorimetric detection of glucose. Nanoscale 4(13):3969–76

  44. Occupational Safety and Health Administration (2021) Sampling and Analysis [Available from: https://www.osha.gov/sampling-analysis

Download references

Acknowledgements

The researchers also acknowledge the Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Funding

This research was financially supported by the School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rezvan Zendehdel.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradpour, Z., Helmi Kohnehshahri, M., Vahabi Shekarloo, M. et al. Peroxidase-like reaction by a synergistic inorganic catalyst colloid: a new method for hydrogen peroxide detecting in air samples. Colloid Polym Sci 299, 1567–1575 (2021). https://doi.org/10.1007/s00396-021-04887-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04887-6

Keywords

Navigation