Skip to main content
Log in

LPG gas sensor activities of CeO2-Fe2O3 nanocomposite thin film at optimum temperature

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This research paper illustrates the study about the metal oxide composite material and sums up the mechanism of LPG gas sensing. The microwave assisted sol–gel method was applied for synthesizing the ultrafine CeO2, α-Fe2O3 nanoparticles (NPs) and CeO2-Fe2O3 nanocomposites (NCs). The synthesized materials were characterized by means of techniques as XRD, SEM, EDAX and UV–Vis. Spectroscopy. X-ray diffraction patterns of CeO2 NPs confirmed the cubic structure with crystallite size of 26 nm, and α-Fe2O3 NPs revealed the creation of rhombohedral structure with crystallite size of 25 nm. The CeO2-Fe2O3 nanocomposite (NC) has a crystallite size of 10 nm. The SEM image of CeO2-Fe2O3 NC shows small clusters of nanoparticles leading to the establishment of a high mesoporous surface which is useful for gas sensing application. An optical analysis shows that band gap energy lowers from 3.19 eV (Eg-CeO2) to 1.4 eV (Eg-CeO2-Fe2O3). In this paper, we evaluated the features and mechanism of the LPG sensor centered on pure metal oxides (CeO2, α-Fe2O3) and their composite (CeO2-Fe2O3). The CeO2-Fe2O3 NCs sensor exhibited the highest response of 61.43% with concentration of LPG (24 ppm) at optimum operating temperature 250 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Fang, J. Futter, A. Markwitz, J. Kennedy, UV and humidity sensing properties of ZnO nanorods prepared by the arc discharge method. Nanotechnology 20, 245502 (2009). https://doi.org/10.1088/0957-4484/20/24/245502

    Article  ADS  Google Scholar 

  2. S. SriRathnakumar et al., Stalling behavior of chloride ions: A non-enzymatic electrochemical detection of α-Endosulfan using CuO interface. Sens. Actuators B Chem. 293, 100–106 (2019). https://doi.org/10.1016/j.snb.2019.04.141

    Article  Google Scholar 

  3. K. Kaviyarasu, G.T. Mola, S.O. Oseni, K. Kanimozhi, C. Maria Magdalane, J. Kennedy, M. Maaza, ZnO doped single wall carbon nanotube as an active medium for gas sensor and solar absorber. J. Mater. Sci. Mater. Electron. 30, 147–158 (2019). https://doi.org/10.1007/s10854-018-0276-6

    Article  Google Scholar 

  4. C. Balamurugan, D.-W. Lee, A. Subramania, Preparation and LPG-gas sensing characteristics of p-type semiconducting LaNbO4 ceramic material. Appl. Surf. Sci. 283, 58–64 (2013). https://doi.org/10.1016/j.apsusc.2013.06.013

    Article  ADS  Google Scholar 

  5. B. Thomas, B. Skariah, Spray deposited Mg-doped SnO2 thin film LPG sensor: XPS and EDX analysis in relation to deposition temperature and doping. J. Alloys Compd. 625, 231–240 (2015)

    Article  Google Scholar 

  6. V. Talwar, O. Singh, R.C. Singh, ZnO assisted polyaniline nanofibers and its application as ammonia gas sensor. Sens. Actuators B Chem. 191, 276–282 (2014)

    Article  Google Scholar 

  7. T. Sen, N.G. Shimpi, S. Mishra, R. Sharma, Polyaniline/γ-Fe2O3 nanocomposite for room temperature LPG sensing. Sens. Actuators B Chem. 190, 120–126 (2014)

    Article  Google Scholar 

  8. S.S. Barkade, D.V. Pinjari, U.T. Nakate et al., Ultrasound assisted synthesis of polythiophene/SnO2 hybrid nano latex particles for LPG sensing. Chem. Eng. Process. 74, 115–123 (2013)

    Article  Google Scholar 

  9. S. Singh, V. Gupta, B.C. Yadav, P. Tandon, A.K. Singh, Structural analysis of nanostructured iron antimonate by experimental and quantum chemical simulation and its LPG sensing. Sens. Actuators B Chem. 195, 373–381 (2014)

    Article  Google Scholar 

  10. Y. Shi, H. Xu, T. Liu, S. Zeb, Y. Nie, Y. Zhao, C. Qin, X. Jiang, Advanced development of metal oxide nanomaterials for H2 gas sensing applications. Mater. Adv. 2, 1530–1569 (2021). https://doi.org/10.1039/d0ma00880j

    Article  Google Scholar 

  11. A. Mirzaei, B. Hashemi, K. Janghorban, α-Fe2O3 based nanomaterials as gas sensors. J. Mater. Sci.: Mater Electron. 27, 3109–3144 (2016). https://doi.org/10.1007/s10854-015-4200-z

    Article  Google Scholar 

  12. P. Sudarsanama, B. Malleshama, P.S. Reddya, D. Großmannb, W. Grünertb, B.M. Reddya, Nano-Au/CeO2 catalysts for CO oxidation: influence of dopants (Fe, La and Zr) on the physicochemical properties and catalytic activity. Appl. Catal. B: Environ. 144, 900–908 (2014)

    Article  Google Scholar 

  13. L. Chen, P. Fleming, V. Morris, J.D. Holmes, M.A. Morris, Size-related lattice parameter changes and surface defects in ceria nanocrystals. J. Phys. Chem. C 114, 12909–12919 (2010)

    Article  Google Scholar 

  14. W.Y. Hernández, O.H. Laguna, M.A. Centeno, J.A. Odriozola, Structural and catalytic properties of lanthanide (La, Eu, Gd) doped ceria. J. Solid State Chem. 184, 3014–3020 (2011)

    Article  ADS  Google Scholar 

  15. N.S. Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, J. In Hana, Fabrication of CeO2/Fe2O3 composite nanospindles for enhanced visible light driven photocatalyst and supercapacitor electrode. J. Mater. Chem. A 3, 15248–15258 (2015)

    Article  Google Scholar 

  16. P. Gao, R. Liu, H. Huang, X. Jia, H. Pan, MOF-templated controllable synthesis of α-Fe2O3 porous nanorods and its gas sensing properties. RSC Adv. 6, 94699–94705 (2016). https://doi.org/10.1039/C6RA21567J

    Article  ADS  Google Scholar 

  17. A. Ali, H. Zafar, M. Zia, I. ul Haq, A. R. Phull, J. S. Ali, A. Hussain, (2016) Synthesis, characterization, applications, and challenges of iron oxide nanoparticles. Nanotechnol. Sci. Appl. 9, 49–67. https://doi.org/10.2147/NSA.S99986

  18. P. Rao, R.V. Godbole, D.M. Phase, R.C. Chikate, Sunita Bhagwat, Ferrite thin films: synthesis, characterization and gas sensing properties towards LPG. Mater. Chem. Phys. 149–150, 333–338 (2015). https://doi.org/10.1016/j.matchemphys.2014.10.025

    Article  Google Scholar 

  19. B.G. Ghule, S.F. Shaikh, N.M. Shinde, S.S. Sangale, P.V. Shinde, R.S. Mane, Promoted room-temperature LPG gas sensor activities of graphene oxide@Fe2O3 composite sensor over individuals. Mater. Res. Express 5, 125001 (2018). https://doi.org/10.1088/2053-1591/aaddcc

    Article  ADS  Google Scholar 

  20. B. Chaitongrat, S. Chaisitsak, Fast-LPG sensors at room temperature by α-Fe2O3/CNT nanocomposite thin films. J. Nanomater. (2018). https://doi.org/10.1155/2018/9236450

    Article  Google Scholar 

  21. A. Sriwati, A. Suyuti, I.E. Ahmad, Umraeni Salam, Intelligent system of LPG gas leakage detection for web-based living house security. ICIC Express Lett. B: Appl. 10, 89–96 (2019)

    Google Scholar 

  22. B.P. Singh et al., Synthesis, characterization, and electrocatalytic ability of γ-Fe2O3 nanoparticles for sensing acetaminophen. Indian J. Pure Appl. Phys. 55, 722–728 (2017)

    Google Scholar 

  23. B.S. Shirke, A.A. Patil, P.P. Hankare, K.M. Garadkar, Synthesis of cerium oxide nanoparticles by microwave technique using propylene glycol as a stabilizing agent. J. Mater. Sci. Mater. Electron. 22, 200–203 (2011)

    Article  Google Scholar 

  24. B.S. Shirke, H.M. Shinde, B.S. Kadwale, K.M. Garadkar, (2013) Structural and electrical property of zirconium oxide nanoparticles prepared by microwave assisted sol-gel method. National Conference on Drug Designing and Discovery 56–59

  25. B.S. Shirke, P.V. Korake, P.P. Hankare, S.R. Bamane, K.M. Garadkar, Synthesis and characterization of pure anatase TiO2 nanoparticles. J. Mater. Sci. Mater. Electron. 22, 821–824 (2011)

    Article  Google Scholar 

  26. T.T. Bhosale, A.R. Kuldeep, S.J. Pawar, B.S. Shirke, K.M. Garadkar, Photocatalytic degradation of methyl orange by Eu doped SnO2 nanoparticles. J. Mater. Sci. Mater. Electron. 30, 18927–18935 (2019). https://doi.org/10.1007/s10854-019-02249-1

    Article  Google Scholar 

  27. H.M. Shinde, T.T. Bhosale, N.L. Gavade, S.B. Babar, R.J. Kamble, B.S. Shirke, K.M. Garadkar, Biosynthesis of ZrO2 nanoparticles from Ficus benghalensis leaf extract for photocatalytic activity. J. Mater. Sci. Mater. Electron. 29, 14055–14064 (2018). https://doi.org/10.1007/s10854-018-9537-7

    Article  Google Scholar 

  28. K.M. Garadkar, B.S. Shirke, P.P. Hankare, D.R. Patil, Low cost nanostructured anatase TiO2 as a H2S gas sensor synthesized by microwave assisted technique. Sensor Lett. 9, 526–532 (2011)

    Article  Google Scholar 

  29. S. Chaiwichian, B. Inceesungvorn, k Pingmuang, k Wetchakun, S Phanichphant, N Wetchakun, , Synthesis and characterization of the novel BiVO4/CeO2 nanocomposites. Eng. J. 16, 153–160 (2012)

    Article  Google Scholar 

  30. D.E. Fouad, C. Zhanga, H. El-Didamony, L. Yingnana, T.D. Mekuria, A.H. Shah, Improved size, morphology and crystallinity of hematite (α-Fe2O3) nanoparticles synthesized via the precipitation route using ferric sulfate Precursor. Results Phys. 12, 1253–1261 (2019). https://doi.org/10.1016/j.rinp.2019.01.005

    Article  ADS  Google Scholar 

  31. X. Hou, J. Qian, L. Li, F. Wang, B. Li, F. He, M. Fan, Z. Tong, Lihui Dong, Lin Dong, Preparation and investigation of iron−cerium oxide compounds for NOx reduction. Ind. Eng. Chem. Res. 57, 16675–16683 (2018)

    Article  Google Scholar 

  32. M. Singh, M. Goyal, K. Devlal, Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 12, 470–475 (2018). https://doi.org/10.1080/16583655.2018.1473946

    Article  Google Scholar 

  33. M.H. Mahmood, M.A. Maleque, Effective parameter of nano-CuO coating on CO gas-sensing performance and heat transfer efficiency. Arab. J. Sci. Eng. 46, 6557–6566 (2021). https://doi.org/10.1007/s13369-020-05233-8

    Article  Google Scholar 

  34. V.B. Mane, L.H. Mahind, K.D. Jadhav, S.A. Waghmode, S.P. Dagade, Structural characterization of nano sized Fe2O3-CeO2 catalysts by XRD, EDX and TEM techniques. Carbon Sci. Tech. 5, 260–264 (2013)

    Google Scholar 

  35. W.A. Aboutaleba, H.M. Gobaraa, K.M. Hashima, S.A. Henein, S.A. Hassan, The catalytic performance of Fe2O3-CeO2 nanocomposite in ethanol conversion. Egypt. J. Chem. 59, 445–464 (2016)

    Article  Google Scholar 

  36. Q. He, Experimental study on polishing performance of CeO2 and nano-SiO2 mixed abrasive. Appl. Nanosci. 8, 163–171 (2018). https://doi.org/10.1007/s13204-018-0657-4

    Article  ADS  Google Scholar 

  37. M. T. Akhtar, M. Ahmad, A. Shaheen, M. Zafar, R. Ullah, M. Asma, S. Sultana, M. Munir, N. Rashid, K. Malik, M. Saeed, A. Waseem (2019) Comparative study of liquid biodiesel from Sterculiafoetida (Bottle Tree) using CuO-CeO2 and Fe2O3 nano catalysts. Front. Energy Res. https://doi.org/10.3389/fenrg.2019.00004

  38. K. R. Nemade, S. A. Waghuley, LPG sensing performance of CuO–Ag2O bimetallic oxide nanoparticles. St. Petersburg Polytech. Univ. J. Phys. Math. 1, 249–255 (2015). https://doi.org/10.1016/j.spjpm.2015.07.006

  39. S. Zeng, Y. Wang, S. Ding, Jesper J.H.B. Sattler, E. Borodina, L. Zhang, B. M. Weckhuysen, H. Su, Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation. J. Power Sources 256, 301–311 (2014)

  40. G.K. Pradhan, K.M. Parida, Fabrication of iron-cerium mixed oxide: an efficient photocatalyst for dye Degradation. Int. J. Eng. Sci. Technol. 2, 53–65 (2010)

    Google Scholar 

  41. S.P. Singha, R.P.S. Chakradhara, J.L. Raob, B. Karmakara, EPR, FTIR, Optical absorption and photoluminescence studies of Fe2O3 and CeO2 doped ZnO-Bi2O3-B2O3 glasses. J. Alloy Compd. 493, 256–262 (2010)

    Article  Google Scholar 

  42. A. Lassoued, M.S. Lassoued, S.G. Granda, B. Dkhil, S. Ammar, A. Gadri, Synthesis and characterization of Ni-doped α-Fe2O3 nanoparticles through co-precipitation method with enhanced photocatalytic activities. J. Mater. Sci. Mater. Electron. 29, 5726–5737 (2018)

    Article  Google Scholar 

  43. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010). https://doi.org/10.3390/s100302088

    Article  ADS  Google Scholar 

  44. Tian-tian Li, N. Bao, Ai-fang Geng, H. Yu, Y. Yang and Xiang-ting Dong, Study on room temperature gas-sensing performance of CuO film-decorated ordered porous ZnO composite by In2O3 sensitization. R. Soc. open sci. 5, 171788 (2018). https://doi.org/10.1098/rsos.171788

  45. M. Singh, B.C. Yadav, A. Ranjan, R.K. Sonker, M. Kaur, Detection of liquefied petroleum gas below lowest explosion limit (LEL) using nanostructured hexagonal strontium ferrite thin film. Sens. Actuators B Chem. 249, 96–104 (2017)

    Article  Google Scholar 

  46. Y.-F. Sun, S.-B. Liu, F.-L. Men, J.-Y. Liu, Z. Jin, L.-T. Kong, J.-H. Liu, Metal oxide nanostructures and their gas sensing properties: a review. Sensors 12, 2610–2631 (2012). https://doi.org/10.3390/s120302610

    Article  ADS  Google Scholar 

  47. A.K. Sharma, S.S. Potdar, K.S. Pakhare, B.M. Sargar, M.V. Rokade, N.L. Tarwal, The selective ethanol gas sensing performance of CdO1-XZnOX nanocomposite. J. Mater. Sci. Mater. Electron. 28, 3752–3761 (2017). https://doi.org/10.1007/s10854-016-5984-1

    Article  Google Scholar 

  48. C. Balamurugan, Sun-Ju Song, Ho-Sung Kim, Enhancing gas response characteristics of mixed metal oxide gas sensors. J. Korean Ceram. Soc. 55, 1–20 (2018). https://doi.org/10.4191/kcers.2018.55.1.10

    Article  Google Scholar 

  49. F. Pourfayaz, A. Khodadadi, Y. Mortazavi, S.S. Mohajerzadeh, CeO2 doped SnO2 sensor selective to ethanol in presence of CO, LPG and CH4. Sens. Actuators B Chem. 108, 172–176 (2005)

    Article  Google Scholar 

  50. M. Hjiri, M. Salah, Aida, G. Neri, NO2 Selective sensor based on α-Fe2O3 nanoparticles synthesized via hydrothermal technique. Sensors 19, 167 (2019). https://doi.org/10.3390/s19010167

  51. S. Wang, W. Chen, J. Li, Z. Song, H. Zhang, W. Zeng, Low Working temperature of ZnO-MoS nanocomposites for delaying aging with good acetylene gas-sensing properties. Nanomaterials 10, 1902 (2020). https://doi.org/10.3390/nano10101902

    Article  Google Scholar 

  52. K.S. Pakhare, B.M. Sargar, S.S. Potdar, A.K. Sharma, U.M. Patil, Facile synthesis of nano-diced SnO2–ZnO composite by chemical route for gas sensor application. J. Electron. Mater. 48, 6269–6279 (2019). https://doi.org/10.1007/s11664-019-07419-9

    Article  ADS  Google Scholar 

  53. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators B Chem. 176, 514–521 (2013). https://doi.org/10.1016/j.snb.2012.08.030

    Article  Google Scholar 

  54. A.V. Kadu, N.N. Gedam, G.N. Chaudhari, Detection of hydrogen sulphide gas sensor based nanostructured Ba2CrMoO6 thick films. Sens. Transducers 85, 1728–1738 (2007)

    Google Scholar 

  55. A.R. Raju, C.N. Rao, Gas-sensing characteristics of ZnO and copper-impregnated ZnO. Sens. Actuators B Chem. 3, 305–310 (1991)

    Article  Google Scholar 

  56. S.J. Patil, A.V. Patil, C.G. Dighavkar et al., Semiconductor metal oxide compounds based gas sensors: A literature review. Front. Mater. Sci. 9, 14–37 (2015). https://doi.org/10.1007/s11706-015-0279-7

    Article  Google Scholar 

  57. Z. Tianshu, L. Hongmei, Z. Huanxing, Z. Ruifang, Shen Yusheng, Synthesis and gas-sensing characteristics of high thermo stability γ-Fe2O3 powder. Sens. Actuators B Chem. 32, 181–184 (1996)

    Article  Google Scholar 

  58. N. Izu, W. Shin, I. Matsubara, N. Murayama, The effects of the particle size and crystallite size on the response time for resistive oxygen gas sensor using cerium oxide thick film. Sens. Actuators B Chem. 94, 222–227 (2003). https://doi.org/10.1016/S0925-4005(03)00330-7

    Article  Google Scholar 

  59. D.R. Patil, L.A. Patil, G.H. Jain, M.S. Wagh, S.A. Patil, Surface activated ZnO thick film resistors for LPG gas sensing. Sens. Transducers 74, 874–883 (2006)

    Google Scholar 

  60. A. Kokka, T. Ramantani, P. Panagiotopoulou, Effect of operating conditions on the performance of Rh/TiO2 catalyst for the reaction of LPG steam reforming. Catalysts 11, 374 (2021). https://doi.org/10.3390/catal11030374

    Article  Google Scholar 

  61. S. McAllister, Jyh-Yuan Chen, A. Carlos Fernandez-Pello, Fundamentals of Combustion Processes 93–126 (2011). https://doi.org/10.1007/978-1-4419-7943-8

  62. A. Parveen, A. Koppalkar, A.S. Roy, Liquefied petroleum gas sensing of polyaniline–titanium dioxide nanocomposites. Sensor Lett. 10, 242–248 (2013)

    Article  Google Scholar 

  63. S.T. Navale, M.A. Chougule, V.B. Patil, A.T. Mane, Highly sensitive, reproducible, selective and stable CSA-polypyrrole NO2 sensor. Synth. Met. 189, 111–118 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Department of Chemistry, K. R. P. Kanya Mahavidyalaya, Islampur and Material Science Laboratory, Department of Chemistry, Y. C. Warana Mahavidyalaya, Warananagar for providing laboratory facilities and provision of research facilities for this project.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Shirke.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kabure, A.A., Shirke, B.S., Mane, S.R. et al. LPG gas sensor activities of CeO2-Fe2O3 nanocomposite thin film at optimum temperature. Appl. Phys. A 127, 711 (2021). https://doi.org/10.1007/s00339-021-04849-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04849-3

Keywords

Navigation