Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Characterization of stability and challenges to improve lifetime in perovskite LEDs

Low stability of perovskite light-emitting diodes (PeLEDs) is the biggest obstacle to the commercialization of PeLED displays. Here, we cover the current status and challenges in analysing and improving the stability of PeLEDs and suggest some advice that will benefit the community to boost the operational lifetime of PeLEDs.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Lifetime measurement setup for PeLEDs.
Fig. 2: Lifetime characteristics of LEDs.
Fig. 3: Some selected PeLEDs with long lifetime, and their strategies to improve stability.

References

  1. Pacchioni, G. Nat. Rev. Mater. 6, 108 (2021).

    Article  ADS  Google Scholar 

  2. Tan, Z.-K. et al. Nat. Nanotechnol. 9, 687–692 (2014).

    Article  ADS  Google Scholar 

  3. Cho, H. et al. Science 350, 1222–1225 (2015).

    Article  ADS  Google Scholar 

  4. Kim, Y.-H. et al. Nat. Photon. 15, 148–155 (2021).

    Article  ADS  Google Scholar 

  5. Wang, Y.-K. et al. Angew. Chem. Int. Ed. 60, 16164–16170 (2021).

    Article  Google Scholar 

  6. Zhang, L. Z. et al. Adv. Funct. Mater. 30, 2001834 (2020).

    Article  Google Scholar 

  7. Li, H. et al. Adv. Mater. 33, 2008820 (2021).

    Article  Google Scholar 

  8. Bi, C. et al. Adv. Mater. 33, 2006722 (2021).

    Article  Google Scholar 

  9. Forrest, S. R. Organic Electronics: Foundations to Applications Ch. 6 (Oxford Univ. Press, 2020).

  10. Laaperi, A. J. Soc. Inf. Disp. 16, 1125–1130 (2008).

    Article  Google Scholar 

  11. Tang, C. W. & VanSlyke, S. A. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  ADS  Google Scholar 

  12. Lin, Y. et al. ACS Energy Lett. 2, 1571–1572 (2017).

    Article  Google Scholar 

  13. Han, B. et al. Adv. Funct. Mater. 31, 2011003 (2021).

    Article  Google Scholar 

  14. Reese, M. O. et al. Sol. Energy Mater. Sol. Cells 95, 1253–1267 (2011).

    Article  Google Scholar 

  15. Khenkin, M. V. et al. Nat. Energy 5, 35–49 (2020).

    Article  ADS  Google Scholar 

  16. Féry, C., Racine, B., Vaufrey, D., Doyeux, H. & Cinà, S. Appl. Phys. Lett. 87, 213502 (2005).

    Article  ADS  Google Scholar 

  17. Sim, B. et al. Phys. Rev. Appl. 14, 024002 (2020).

    Article  ADS  Google Scholar 

  18. Kim, H., Shin, H., Park, J., Choi, Y. & Park, J. In 2018 IEEE International Reliability Physics Symposium (IRPS) 3C.7-1–3C.7-6 (IEEE, 2018).

  19. Kim, H. et al. Nat. Commun. 11, 3378 (2020).

    Article  ADS  Google Scholar 

  20. Lin, K. et al. Nature 562, 245–248 (2018).

    Article  ADS  Google Scholar 

  21. Wu, T. et al. Angew. Chem. Int. Ed. 59, 4099–4105 (2020).

    Article  Google Scholar 

  22. Dong, Q., Lei, L., Mendes, J. & So, F. J. Phys. Mater. 3, 012002 (2020).

    Article  Google Scholar 

  23. Zhao, L. et al. Adv. Mater. 32, 2000752 (2020).

    Article  Google Scholar 

  24. Knight, A. J. & Herz, L. M. Energy Environ. Sci. 13, 2024–2046 (2020).

    Article  Google Scholar 

  25. Xiao, Z. et al. Nano Lett. 17, 6863–6869 (2017).

    Article  ADS  Google Scholar 

  26. Yuan, Y. et al. Adv. Energy Mater. 6, 1501803 (2016).

    Article  Google Scholar 

  27. Prakasam, V., Tordera, D., Bolink, H. J. & Gelinck, G. Adv. Opt. Mater. 7, 1900902 (2019).

    Article  Google Scholar 

  28. Quan, L. N. et al. Nat. Commun. 11, 170 (2020).

    Article  ADS  Google Scholar 

  29. Wang, H. et al. Nat. Commun. 10, 665 (2019).

    Article  ADS  Google Scholar 

  30. Li, C. et al. J. Mater. Chem. A 7, 24150–24163 (2019).

    Article  Google Scholar 

  31. Gong, X. et al. Nat. Mater. 17, 550–556 (2018).

    Article  ADS  Google Scholar 

  32. Qin, C. et al. Nat. Photon. 14, 70–75 (2020).

    Article  ADS  Google Scholar 

  33. Ahmed, G. H., Yin, J., Bakr, O. M. & Mohammed, O. F. ACS Energy Lett. 6, 1340–1357 (2021).

    Article  Google Scholar 

  34. Zhang, X. et al. ACS Cent. Sci. 4, 1352–1359 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2016R1A3B1908431).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tae-Woo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks Franky So and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, SJ., Kim, J.S. & Lee, TW. Characterization of stability and challenges to improve lifetime in perovskite LEDs. Nat. Photon. 15, 630–634 (2021). https://doi.org/10.1038/s41566-021-00863-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00863-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing