Skip to main content
Log in

Multiphoton Processes of Two Modes of Quantized Field Interaction with Interacting Asymmetric Two Two-Level Atoms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The interaction between two modes quantized field and asymmetric two atoms represents one of the important quantum models to study the nonclassical quantized phenomena. The two modes multiphoton processes and interacting asymmetric two two-level atoms are introduced in the proposed quantum system. The time dependent solution of the proposed quantum system is computed analytically for asymmetric and symmetric cases. This analytical solution depends on the eigenvalues and the eigenvectors of the coefficient matrix of the Schrödinger equation. The nonclassical features of the proposed quantum system are evaluated as the entanglement and the atomic populations. The entanglement between atom and field is measured via the von Neumann entropy while the entanglement between two atoms is measured by the concurrence. These quantized features are analyzed for variety of the detuning parameter, the atom-atom coupling constant, and the numbers of two photon modes. The most important observations are that: If the numbers of two photon modes are identical, the von Neumann entropy is strong most of the time, the periodic time of the entropy and atomic populations is double comparing with other cases, and the concurrence is non-existent for asymmetric case. In the presence the detuning parameter and the atom-atom coupling constant, the von Neumann entropy increases with time while the amplitude of the concurrence decreases with time for symmetric case. The fluctuations of the von Neumann entropy for symmetric case are stable and uniform more than its for asymmetric case. The concurrence is irregular for asymmetric case. Furthermore, there are other quantized effects of the proposed model which are discussed for symmetric and asymmetric cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Braunstein, S.L., Mann, A.: Measurement of the Bell operator and quantum teleportation. Phys. Rev. A. 51, R1727–R1730 (1995)

    Article  ADS  Google Scholar 

  4. Murao, M., Jonathan, D., Plenio, M.B., Vedral, V.: Quantum telecloning and multiparticle entanglement. Phys. Rev. A. 59, 156–161 (1999)

    Article  ADS  Google Scholar 

  5. Jayness, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE. 51, 89–109 (1963)

    Article  Google Scholar 

  6. Tavis, M., Cummings, F.W.: Exact Solution for anN-Molecule—Radiation-Field Hamiltonian. Phys. Rev. 170, 379–384 (1968)

    Article  ADS  Google Scholar 

  7. Tavis, M., Cummings, F.W.: Approximate Solutions for anN-Molecule-Radiation-Field Hamiltonian. Phys. Rev. 188, 692–695 (1969)

    Article  ADS  Google Scholar 

  8. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press (2000)

    MATH  Google Scholar 

  9. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Phys. Rev. A 69, 062320 (2004), Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation

  10. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature. 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  11. Irish, E.K., Schwab, K.: Quantum measurement of a coupled nanomechanical resonator–Cooper-pair box system. Phys. Rev. B. 68, 155311 (2003)

    Article  ADS  Google Scholar 

  12. Schwab, K.C., Roukes, M.L.: Putting Mechanics into Quantum Mechanics. Phys. Today. 58, 36–42 (2005)

    Article  Google Scholar 

  13. Rempe, G., Walther, H., Klein, N.: Observation of quantum collapse and revival in a one-atom maser. Phys. Rev. Lett. 58, 353–356 (1987)

    Article  ADS  Google Scholar 

  14. Niemczyk, T., Deppe, F., Huebl, H., Menzel, E.P., Hocke, F., Schwarz, M.J., Garca-Ripoll, J.J., Zueco, D., Hümmer, T., Solano, E., Marx, A., Gross, R.: Circuit quantum electrodynamics in the ultrastrong-coupling regime. Nat. Phys. 6, 772–776 (2010)

    Article  Google Scholar 

  15. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense Coding in Experimental Quantum Communication. Phys. Rev. Lett. 76, 4656–4659 (1996)

    Article  ADS  Google Scholar 

  16. Li, X.Y., Pan, Q., Jing, J., Zhang, J., Xie, C., Peng, K.: Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  17. DeVoe, R.G., Brewer, R.G.: Observation of Superradiant and Subradiant Spontaneous Emission of Two Trapped Ions. Phys. Rev. Lett. 76, 2049–2052 (1996)

    Article  ADS  Google Scholar 

  18. Turchette, Q.A., Wood, C., King, B., Myatt, C., Leibfried, D., Itano, W., Monroe, C., Wineland, D.: Deterministic Entanglement of Two Trapped Ions. Phys. Rev. Lett. 81, 3631–3634 (1998)

    Article  ADS  Google Scholar 

  19. Allen, L., Eberly, J.H.: Optical Resonance and Two-Level Atoms, Dover Publications, (1987)

  20. Forn-Daz, P., Lisenfeld, J., Marcos, D., Garca Ripoll, J.J., Solano, E., Harmans, C.J.P.M., Mooij, J.E.: Observation of the Bloch-Siegert Shift in a Qubit-Oscillator System in the Ultrastrong Coupling Regime. Phys. Rev. Lett. 105, 237001 (2010)

    Article  ADS  Google Scholar 

  21. Fedorov, A., Feofanov, A.K., Macha, P., Forn-Daz, P., Harmans, C.J.P.M., Mooij, J.E.: Strong Coupling of a Quantum Oscillator to a Flux Qubit at Its Symmetry Point. Phys. Rev. Lett. 105, 060503 (2010)

    Article  ADS  Google Scholar 

  22. Seke, J.: Many-atom Jaynes-Cummings model without rotating-wave approximation. Quantum Opt. 3, 127–136 (1991)

    Article  ADS  Google Scholar 

  23. Seke, J.: The influence of the counter-rotating terms on the steady state in the Dicke model. Nuovo Cimento D. 13, 1429–1431 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  24. Klimov, A.B., Chumakov, S.M.: A Group-Theoretical Approach to Quantum Optics: Models of Atom-Field Interactions. Wiley-VCH (2009)

    Book  Google Scholar 

  25. Zueco, D., Reuther, G.M., Kohler, S., Hänggi, P.: Qubit-oscillator dynamics in the dispersive regime: Analytical theory beyond the rotating-wave approximation. Phys. Rev. A. 80, 033846 (2009)

    Article  ADS  Google Scholar 

  26. Khalil, E.M., Abdalla, M.S., Obada, A.S.-F.: Entropy and variance squeezing of two coupled modes interacting with a two-level atom: Frequency converter type. Ann. Phys. 321, 421–434 (2006)

    Article  ADS  MATH  Google Scholar 

  27. Abdalla, M.S., Khalil, E.M., Obada, A.S.-F.: Statistical properties of a two-photon cavity mode in the presence of degenerate parametric amplifier. Ann. Phys. 322, 2554–2568 (2007)

    Article  ADS  MATH  Google Scholar 

  28. Zhang, J.-S., Chen, A.-X., Abdel-Aty, M.: Two atoms in dissipative cavities in dispersive limit: entanglement sudden death and long-lived entanglement. J. Phys. B. 43, 025501 (2010)

    Article  ADS  Google Scholar 

  29. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entropy squeezing and atomic inversion in thek-photon Jaynes—Cummings model in the presence of the Stark shift and a Kerr medium: A full nonlinear approach. Chin. Phys. B. 23, 074203 (2014)

    Article  Google Scholar 

  30. Tavassoly, M.K., Yadollahi, F.: Dynamics of states in the nonlinear interaction regime between a three-level atom and generalized coherent states and their non-classical features. Int. J. Mod. Phys. B. 26, 1250027 (2012)

    Article  ADS  MATH  Google Scholar 

  31. Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position–momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B. 46, 145506 (2013)

    Article  ADS  Google Scholar 

  32. Tavassoly, M.K., Rastegarzadeh, M.: Periodic behavior of collapse–revival phenomenon in the full nonlinear interaction between a three-level atom and a single-mode field. Ann. Phys. 373, 544–556 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Bogolyubov, N.N., Andrey, J., Soldatov, V.: Appl. Math. Inf. Sci. 13, 725 (2019)

    Article  MathSciNet  Google Scholar 

  34. Said, T., Chouikh, A., Bennai, M.: N Two-Transmon-Qubit Quantum Logic Gates Realized in a Circuit QED System. Appl. Math. Inf. Sci. 13, 839–846 (2019)

    Article  MathSciNet  Google Scholar 

  35. Zidan, N., Abdel-Aty, A.-H., Younes, A., Zanaty, E.A., El-khayat, I., Abdel-Aty, M.: A Novel Algorithm based on Entanglement Measurement for Improving Speed of Quantum Algorithms. Appl. Math. Inf. Sci. 12, 265–269 (2018)

    Article  MathSciNet  Google Scholar 

  36. Khan, M.I., Khan, M.A.R.: Generalized Record Values from Distributions Having Power Hazard Function and Characterization. J. Stat. Appl. Prob. 8, 103–111 (2019)

    Article  Google Scholar 

  37. Kumar, M., Maurya, S., Singh, S., Singh, U., Pathak, A.: J. Stat. Appl. Prob. 8, 609 (2019)

    Google Scholar 

  38. Shehata, A.M.: Inf. Sci. Lett. 8, 1 (2019)

    Article  Google Scholar 

  39. Taiwo, T.J.: Inf. Sci. Lett. 8, 25 (2019)

    Article  Google Scholar 

  40. Monte-Serrat, D., Cabella, B., Cattani, C.: Inf. Sci. Lett. 9, 161 (2020)

    Article  Google Scholar 

  41. Enayat, M.: AbdElrazik: J. Stat. Appl. Prob. 9, 43 (2020)

    Google Scholar 

  42. Sridevi, R., Philominathan, P.: Inf. Sci. Lett. 9, 219 (2020)

    Article  Google Scholar 

  43. Abdel-Hameed, H.F.: The Entangling-Probe Attack On The Bennett-Brassard 1984 Protocol. Appl. Math. Inf. Sci. 14, 909–912 (2020)

    Article  MathSciNet  Google Scholar 

  44. Bianca, C., Menale, M.: Appl. Math. Inf. Sci. 14, 527 (2020)

    Article  MathSciNet  Google Scholar 

  45. El-Orany, F.A.A., Wahiddin, M.R.B., Obada, A.-S.F.: Single-atom entropy squeezing for two two-level atoms interacting with a single-mode radiation field. Opt. Commun. 281, 2854–2863 (2008)

    Article  ADS  Google Scholar 

  46. Obada, A.-S.F., Abdel-Khalek, S., Berrada, K., Shaheen, M.E.: Investigations of information quantifiers for the Tavis–Cummings model. Physica A. 392, 6624–6632 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  47. Abdalla, M.S., Khalil, E.M., Obada, A.S.-F., Perina, J., Krepelka, J.: Eur. Phys. J. Plus. 130, 227 (2015)

    Article  Google Scholar 

  48. Nahla, A.A., Ahmed, M.M.A.: Int. J. Mod. Phys. B 32, 1850250 (2018), Nonclassical properties of asymmetric two two-level atoms interacting with multi-photon quantized field

  49. Nahla, A.A., Ahmed, M.M.A., Alamri, S.Z.: Analytical computation of nonclassical behavior for asymmetric two two-level atoms interacting with SU(1,1) quantum system. Eur. J. Phys. D. 73, 44 (2019)

    Article  ADS  Google Scholar 

  50. Nahla, A.A., Ahmed, M.M.A.: Sensitivity measurement for asymmetric two two-level atoms interacting with field obeys SU(1,1) Lie group via atomic inversion. J. Taibah Unv. Sci. 13, 309–317 (2019)

    Article  Google Scholar 

  51. Bashkirov, E.K.: Entanglement in the degenerate two-photon Tavis–Cummings model. Phys. Scr. 82, 015401 (2010)

    Article  ADS  MATH  Google Scholar 

  52. Dung, H.T., Huyen, N.D.: State evolution in the two-photon atom-field interaction with large initial fields. Phys. Rev. A. 49, 473–480 (1994)

    Article  ADS  Google Scholar 

  53. Werner, R.F.: Quantum Information – An Introduction to Basic Theoretical Concepts and Experiments (Springer Tracts Modern Phys., Vol. 173, Springer, Heidelberg, 2001)

  54. Araki, H., Lieb, E.: Entropy inequalities. Commun. Math. Phys. 18, 160–170 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  55. Phoenix, S.J.D., Knight, P.L.: Establishment of an entangled atom-field state in the Jaynes-Cummings model. Phys. Rev. A. 44, 6023–6029 (1991)

    Article  ADS  Google Scholar 

  56. Hill, S., Wootters, W.K.: Entanglement of a Pair of Quantum Bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  57. Wootters, W.K.: Entanglement of Formation of an Arbitrary State of Two Qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  MATH  Google Scholar 

  58. Abdel-Hafez, A.M., Obada, A.S.-F., Ahmed, M.M.A.: N-level atom andN-1modes: Statistical aspects and interaction with squeezed light. Phys. Rev. A. 35, 1634–1647 (1987)

    Article  ADS  Google Scholar 

  59. Khalil, E.M., Abdalla, M.S., Obada, A.S.-F., Perina, J.: J. Opt. Soc. Am. B. 27, 266 (2010)

    Article  ADS  Google Scholar 

  60. Khalil, E.M., Abdalla, M.S., Obada, A.S.-F.: Pair entanglement of two-level atoms in the presence of a nondegenerate parametric amplifier. J. Phys. B. 43, 095507 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah A. Nahla.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nahla, A.A., Ahmed, M.M.A. Multiphoton Processes of Two Modes of Quantized Field Interaction with Interacting Asymmetric Two Two-Level Atoms. Int J Theor Phys 60, 3666–3688 (2021). https://doi.org/10.1007/s10773-021-04856-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04856-3

Keywords

Navigation