Skip to main content

Advertisement

Log in

Daytime passive radiative cooler using zeolite

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

As a passive, efficient, and renewable powerless cooling method, radiation cooling has received widespread attention in the field of energy conservation. Radiators with high reflectivity in the solar radiation band can achieve daytime radiation cooling, which can better meet people’s needs. In this work, zeolites were used as a functional material for radiative cooling due to its high solar reflectivity, high mid-infrared emissivity, and low heat conductivity. The influence of zeolite spectral properties and thermal insulation performance on their cooling effect were systematically studied. The cooling test showed that the ZSM-5-470 zeolite-based coating achieved a coating temperature (T) decrease of ~ 21 °C compared to a pure aluminum plate and a decrease of ~ 4 °C compared to a TiO2 coating under direct sunlight. However, the inside temperature (Tin) of ZSM-5-470 coating reached at most ~ 3.2 °C lower than TiO2 coating. This may suggest that the spectral properties of zeolites have more obvious effect on the daytime radiative cooling than their thermal conductivities. Zeolites are convenient to manufacture for mass production, which makes them the potential daytime cooling materials to achieve economic and environmental friendly cooling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Burke, S.M. Hsiang, E. Miguel, Nature 527, 235 (2015)

    Article  CAS  Google Scholar 

  2. W. Liu, J. Zhang, B. Bluemling, A.P.J. Mol, C. Wang, Appl. Energy 147, 287 (2015)

    Article  Google Scholar 

  3. M.M. Hossain, M. Gu, Adv. Sci. 3, 1 (2016)

    Article  Google Scholar 

  4. N.F. Cunha, A. AL-Rjoub, L. Rebouta, L.G. Vieira, S. Lanceros-Mendez, Thin Solid Films 694, 137736 (2020)

    Article  CAS  Google Scholar 

  5. K. Yao, H. Ma, M. Huang, H. Zhao, J. Zhao, Y. Li, S. Dou, Y. Zhan, ACS Appl. Nano Mater. 2, 5512 (2019)

    Article  CAS  Google Scholar 

  6. Y. Fu, J. Yang, Y.S. Su, W. Du, Y.G. Ma, Sol. Energy Mater. Sol. Cells 191, 50 (2019)

    Article  CAS  Google Scholar 

  7. N. Li, J. Wang, D. Liu, X. Huang, Z. Xu, C. Zhang, Z. Zhang, M. Zhong, Sol. Energy Mater. Sol. Cells 194, 103 (2019)

    Article  CAS  Google Scholar 

  8. A.P. Raman, M.A. Anoma, L. Zhu, E. Rephaeli, S. Fan, Nature 515, 540 (2014)

    Article  CAS  Google Scholar 

  9. Y. Huang, M. Pu, Z. Zhao, X. Li, X. Ma, X. Luo, Opt. Commun. 407, 204 (2018)

    Article  CAS  Google Scholar 

  10. Z. Chen, L. Zhu, A. Raman, S. Fan, Nat. Commun. 7, 13729 (2016)

    Article  CAS  Google Scholar 

  11. M.M. Hossain, B. Jia, M. Gu, Adv. Opt. Mater. 3, 1047 (2015)

    Article  CAS  Google Scholar 

  12. C. Zou, G. Ren, M.M. Hossain, S. Nirantar, W. Withayachumnankul, T. Ahmed, M. Bhaskaran, S. Sriram, M. Gu, C. Fumeaux, Adv. Opt. Mater. 5, 1700460 (2017)

    Article  Google Scholar 

  13. Z. Xu, N. Li, D. Liu, X. Huang, J. Wang, W. Wu, H. Zhang, H. Liu, Z. Zhang, M. Zhong, Sol. Energy Mater. Sol. Cells 185, 536 (2018)

    Article  CAS  Google Scholar 

  14. T. Li, Y. Zhai, S. He, W. Gan, Z. Wei, M. Heidarinejad, D. Dalgo, R. Mi, X. Zhao, J. Song, J. Dai, C. Chen, A. Aili, A. Vellore, A. Martini, R. Yang, J. Srebric, X. Yin, L. Hu, Science 364, 760 (2019)

    Article  CAS  Google Scholar 

  15. B. Zhao, X. Ao, N. Chen, Q. Xuan, M. Hu, G. Pei, Sol. Energy Mater. Sol. Cells 199, 108 (2019)

    Article  CAS  Google Scholar 

  16. B.M.L., J. Mol. Struct. 213, 321 (1989)

  17. C. Lv, M. Zu, D. Xie, F. Yan, M. Li, H. Cheng, Infrared Phys. Technol. 107, 103342 (2020)

    Article  CAS  Google Scholar 

  18. J.C.B. Marins, D.G. Moreira, S.P. Cano, M.S. Quintana, D.D. Soares, A. De Andrade Fernandes, F.S. Da Silva, C.M.A. Costa, P.R. Dos Santos Amorim, Infrared Phys. Technol. 65, 30 (2014)

    Article  Google Scholar 

  19. G. Kirchhoff, London, Edinburgh. Dublin Philos. Mag. J. Sci. 20, 1 (1860)

    Article  Google Scholar 

  20. S.A. Bowers, R.J. Hanks, Soil Sci. 100, 130 (1971)

    Article  Google Scholar 

  21. L.S. Dent, J.V. Smith, Nature 181, 1794 (1958)

    Article  CAS  Google Scholar 

  22. G.T. Kokotailo, S.L. Lawton, D.H. Olson, W.M. Meier, Nature 272, 437 (1978)

    Article  CAS  Google Scholar 

  23. M.E. Leonowicz, J.A. Lawton, S.L. Lawton, M.K. Rubin, Science 264, 1910 (1994)

    Article  CAS  Google Scholar 

  24. J. Workman Jr., L. Weyer, Practical Guide to Interpretive Near-Infrared Spectroscopy (CRC Press, Boca Raton, 2007)

    Book  Google Scholar 

  25. H.W. Siesler, Y. Ozaki, S. Kawata, H.M. Heise, Near-Infrared Spectroscopy: Principles, Instruments, Applications (John Wiley & Sons, Hoboken, 2008)

    Google Scholar 

  26. M. Koebel, A. Rigacci, P. Achard, J. Sol-Gel Sci. Technol. 63, 315 (2012)

    Article  CAS  Google Scholar 

  27. T. Gao, B.P. Jelle, J. Phys. Chem. C 117, 17294 (2013)

    Article  CAS  Google Scholar 

  28. J.J. Zhao, Y.Y. Duan, X.D. Wang, B.X. Wang, J. Phys. D Appl. Phys. 46, 015304 (2013)

    Article  Google Scholar 

  29. B. Zhao, M. Hu, X. Ao, N. Chen, G. Pei, Appl. Energy 236, 489 (2019)

    Article  CAS  Google Scholar 

  30. C. Liu, Y. Wu, B. Wang, C.Y. Zhao, H. Bao, Sol. Energy 183, 218 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 51402358) and Scientific Research Plan Program of National University of Defense Technology (ZK17-03-47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mei Zu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zu, M., Yan, F., Lv, C. et al. Daytime passive radiative cooler using zeolite. J Porous Mater 29, 1–8 (2022). https://doi.org/10.1007/s10934-021-01143-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-021-01143-8

Keywords

Navigation