Skip to main content
Log in

Understanding Magnetic Exchange Interactions by the Pressure Dependent Curie Temperature in FeCoNiCuMn High Entropy Alloys

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

We report the pressure (P) dependent Curie temperature, Tc (P) in a FeCoNiCuMn high entropy alloy (HEA). We analyze Tc (P) in terms of d-orbital contraction to explain changes in magnetic exchange interactions (Jex). Considerations of the d-radius contraction inferred from the composition dependence of Tc in γ-Fe-Ni are combined with experimental data for P-dependent lattice constants and magnetic measurements of Tc (P), to calculate contributions of atomic spacing and d-orbital radii to Jex. We show the d-orbital contraction with P captures most of the Tc variation in this alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J.W. Yeh, Recent Progress in High-Entropy Alloys, Ann. Chim. Sci. Des Mater., 2006, 31(6), p 633–648. https://doi.org/10.3166/acsm.31.633-648

    Article  Google Scholar 

  2. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum, 2007, 560, p 1–9.

    Article  Google Scholar 

  3. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural Development in Equiatomic Multicomponent Alloys, Mater. Sci. Eng. A, 2004, 375–377, p 213–218. https://doi.org/10.1016/j.msea.2003.10.257

    Article  Google Scholar 

  4. X. Yang, and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238. https://doi.org/10.1016/j.matchemphys.2011.11.021

    Article  Google Scholar 

  5. Y. Zhang et al., Microstructures and Properties of High-Entropy Alloys, Prog. Mater. Sci., 2014, 61, p 1–93. https://doi.org/10.1016/j.pmatsci.2013.10.001

    Article  Google Scholar 

  6. A. Perrin, M. Sorescu, V. Ravi, D.E. Laughlin, and M.E. McHenry, Mössbauer Analysis of Compositional Tuning of Magnetic Exchange Interactions in High Entropy Alloys, AIP Adv., 2019. https://doi.org/10.1063/1.5079744

    Article  Google Scholar 

  7. M. Kurniawan, A. Perrin, P. Xu, V. Keylin, and M. McHenry, Curie Temperature Engineering in High Entropy Alloys for Magnetocaloric Applications, Lett IEEE Magn, 2016. https://doi.org/10.1109/LMAG.2016.2592462

    Article  Google Scholar 

  8. A. Perrin, M. Sorescu, M.T. Burton, D.E. Laughlin, and M. McHenry, The Role of Compositional Tuning of the Distributed Exchange on Magnetocaloric Properties of High-Entropy Alloys, JOM, 2017, 69(11), p 2125–2129. https://doi.org/10.1007/s11837-017-2523-3

    Article  Google Scholar 

  9. M.S. Lucas et al., Thermomagnetic Analysis of FeCoCrxNi Alloys: Magnetic Entropy of High-Entropy Alloys, J. Appl. Phys., 2013, 113(17), p 2011–2014. https://doi.org/10.1063/1.4798340

    Article  Google Scholar 

  10. B. Fultz, Vibrational Thermodynamics of Materials, Prog. Mater. Sci., 2010, 55(4), p 247–352. https://doi.org/10.1016/J.PMATSCI.2009.05.002

    Article  Google Scholar 

  11. J.Y. Law et al., MnFeNiGeSi High-Entropy Alloy with Large Magnetocaloric Effect, J. Alloys Compd., 2020, 855, p 157424. https://doi.org/10.1016/j.jallcom.2020.157424

    Article  Google Scholar 

  12. K.A. Gallagher, M.A. Willard, V.N. Zabenkin, D.E. Laughlin, and M.E. McHenry, Distributed Exchange Interactions and Temperature Dependent Magnetization in Amorphous Fe88-XCoxZr7B4Cu1 alloys, J. Appl. Phys., 1999, 85, p 5130–5132. https://doi.org/10.1063/1.369100

    Article  ADS  Google Scholar 

  13. H. Bethe, and A. Sommerfeld, Handbuch der Physik 24. Springer, Berlin, 1933.

    MATH  Google Scholar 

  14. J.C. Slater, Atomic Shielding Constants, Phys. Rev., 1930, 36(1), p 57–64. https://doi.org/10.1103/PhysRev.36.57

    Article  ADS  MATH  Google Scholar 

  15. W. Heisenberg, Zur Theorie des Ferromagnetismus, Z. Phys., 1928, 49(9–10), p 619–636. https://doi.org/10.1007/BF01328601

    Article  ADS  MATH  Google Scholar 

  16. J.C. Slater, The Theory of Complex Spectra, Phys. Rev., 1929, 34(10), p 1293–1322. https://doi.org/10.1103/PhysRev.34.1293

    Article  ADS  MATH  Google Scholar 

  17. V.W. Pauli, Uber den Einflub der Geschwindigkeitsabhangigkeit der Elektronenmasse auf den Zeemaneffekt, Z. Physik, 1924, 31(1), p 373–385.

    Article  ADS  Google Scholar 

  18. P. Weiss, The Molecular Field Hypothesis and the Ferromagnetic Property, J. Phys. Theor. Appl., 1907, 6(1), p 661–690.

    Article  Google Scholar 

  19. W. Kohn, and L.J. Sham, Self-Consistent Equations Including Exchange and Correlation Effects, Phys. Rev., 1965, 140(4A), p A1133–A1138.

    Article  ADS  MathSciNet  Google Scholar 

  20. H. Ebert, D. Ködderitzsch, and J. Minár, Calculating Condensed Matter Properties Using the KKR-Green’s Function Method-Recent Developments and Applications, Rep. Prog. Phys., 2011. https://doi.org/10.1088/0034-4885/74/9/096501

    Article  Google Scholar 

  21. C. Jiang, and B.P. Uberuaga, Efficient Ab Initio Modeling of Random Multicomponent Alloys, Phys. Rev. Lett., 2016, 116(10), p 1–5. https://doi.org/10.1103/PhysRevLett.116.105501

    Article  Google Scholar 

  22. P. Hohenberg, and W. Kohn, Inhomogeneous Electron Gas, Phys. Rev., 1964, 136(3B), p B864–B871. https://doi.org/10.1007/BF01198136

    Article  ADS  MathSciNet  Google Scholar 

  23. J.M. MacLaren, T.C. Schulthess, W.H. Butler, R. Sutton, and M. McHenry, Electronic Structure, Exchange Interactions, and Curie Temperature of FeCo, J. Appl. Phys., 1999, 85, p 4833–4835. https://doi.org/10.1063/1.370036

    Article  ADS  Google Scholar 

  24. P. Dirac, Principles of Quantum Mechanics (International Series of Monographs on Physics), 4th edn. Oxford University Press, Oxford, 1982.

    Google Scholar 

  25. V.W. Heitler, and F. London, Wechselwirkung Neutraler Atome und Homoopolare Bindung nach der Quantenmechanik, Z. Phys., 1927, 44, p 455–472.

    Article  ADS  Google Scholar 

  26. J.C. Slater, Electronic Structure of Alloys, J. Appl. Phys., 1937, 48, p 385–390.

    Article  ADS  Google Scholar 

  27. H. Schlosser, J. Ferrante, and J.R. Smith, Global Expression for Representing Cohesive-Energy Curves, Phys. Rev. B, 1991, 44(17), p 9696–9699.

    Article  ADS  Google Scholar 

  28. L.J. Swartzendruber, V.P. Itkin, and C.B. Alcock, The Fe-Ni (Iron-Nickel) System, J. Phase Equilibria, 1991, 12(3), p 288–311. https://doi.org/10.1007/978-0-387-72264-1_19

    Article  Google Scholar 

  29. A. Bruno, and J.P. Lascaray, Nearest and Next Nearest Neighbor Exchange Interaction Between Magnetic Ions in II-VI Semimagnetic Semiconductors, J. Cryst. Growth, 1990, 101(1–4), p 936–939. https://doi.org/10.1016/0022-0248(90)91110-C

    Article  ADS  Google Scholar 

  30. P.J. Webster, and R.S. Tebble, Magnetic and Chemical Order in Pd2MnAl in Relation to Order in the Heusler Alloys Pd2MnIn, Pd2MnSn, and Pd2MnSb, J. Appl. Phys., 1968, 39, p 471.

    Article  ADS  Google Scholar 

  31. B. Cullity, and C. Graham, Introduction to Magnetic Materials, 2nd edn. Wiley, Hoboken, 2009.

    Google Scholar 

  32. M.E. McHenry, and D.E. Laughlin, Magnetic Properties of Metals and Alloys, Vol. 1. Elsevier, Amsterdam, 2014, p 1881

    Google Scholar 

  33. A. Yamada et al., High-Pressure x-ray Diffraction Studies on the Structure of Liquid Silicate Using a Paris-Edinburgh Type Large Volume Press, Rev. Sci. Instrum., 2011, 82, p 1. https://doi.org/10.1063/1.3514087

    Article  Google Scholar 

  34. G. Shen et al., HPCAT: An Integrated High-Pressure Synchrotron Facility at the Advanced Photon Source, High Press. Res., 2008, 28(3), p 145–162. https://doi.org/10.1080/08957950802208571

    Article  ADS  Google Scholar 

  35. A.M. Leary et al., The Influence of Pressure on the Phase Stability of Nanocomposite Fe 89Zr7B4 During Heating from Energy Dispersive x-ray Diffraction, J. Appl. Phys., 2013, 113(17), p 7–10. https://doi.org/10.1063/1.4795326

    Article  Google Scholar 

  36. J.W. Yeh et al., Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303. https://doi.org/10.1002/adem.200300567

    Article  Google Scholar 

  37. S. Ranganathan, Alloyed Pleasures: Multimetallic Cocktails, Curr. Sci., 2003, 85(10), p 1404–1406.

    Google Scholar 

  38. A. Arrott, and J.E. Noakes, Approximate Equation of State for Nickel Near Its Critical Temperature, Phys. Rev. Lett., 1967, 19(14), p 1–4.

    Article  Google Scholar 

  39. R.J. Elliot, Ed., Magnetic Properties of Rare Earth Metals Plenum Press, New York, 1972

    Google Scholar 

  40. J. B. Mann, University of California Ato1nic Structure Calculations Radial Expectation Values: Hydrogen to Lawrencium, 1968.

Download references

Acknowledgements

The authors acknowledge support from the National Science Foundation (NSF) through Grant DMR-1709247. The authors also acknowledge use of the Data Storage Systems Center at CMU. We thank Alex Leary at NASA Glenn Space Center for measurement assistance. Work at LLNL prepared under Contract DE-AC52-07NA27344 and was supported by the LLNL-LDRD Program under Project No. 20-ER-059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alice Perrin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of a special topical focus in the Journal of Phase Equilibria and Diffusion on the Thermodynamics and Kinetics of High-Entropy Alloys. This issue was organized by Dr. Michael Gao, National Energy Technology Laboratory; Dr. Ursula Kattner, NIST; Prof. Raymundo Arroyave, Texas A&M University; and the late Dr. John Morral, The Ohio State University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrin, A., McCall, S., McElfresh, M. et al. Understanding Magnetic Exchange Interactions by the Pressure Dependent Curie Temperature in FeCoNiCuMn High Entropy Alloys. J. Phase Equilib. Diffus. 42, 617–622 (2021). https://doi.org/10.1007/s11669-021-00920-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-021-00920-x

Keywords

Navigation