Skip to main content
Log in

The application of oncolytic viruses in cancer therapy

  • Review
  • Published:
Biotechnology Letters Aims and scope Submit manuscript

Abstract

Oncolytic therapy is a treatment method used to directly combat tumor cells by modifying the genes of naturally occurring low pathogenic viruses to form "rhizobia" virus. By taking the advantage of abnormal signal pathways in cancer cells, it selectively replicates in tumor cells leading to tumor cell lysis and death. At present, clinical studies widely employ biomolecular technology to transform oncolytic viruses to exert stronger oncolytic effects and reduce their adverse reactions. This review summarizes the current progresses and the molecular mechanism of oncolytic viruses towards tumor treatment and management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bell JC, McFadden G (2015) Editorial overview: oncolytic viruses-replicating virus therapeutics for the treatment of cancer. Curr Opin Virol 13:viii–ix

    Article  PubMed  Google Scholar 

  • Bommareddy PK, Shettigar M, Kaufman HL (2018) Integrating oncolytic viruses in combination cancer immunotherapy. Nat Rev Immunol 18(8):498–513

    Article  PubMed  CAS  Google Scholar 

  • Boutros C, Tarhini A, Routier E et al (2016) Safety profiles of anti-CTLA-4 and anti-PD-1 antibodies alone and in combination. Nat Rev Clin Oncol 13(8):473–486

    Article  PubMed  CAS  Google Scholar 

  • Card PB, Hogg RT, Gil Del Alcazar CR, Gerard RD (2012) MicroRNA silencing improves the tumor specificity of adenoviral transgene expression. Cancer Gene Ther 19(7):451–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chaurasiya S, Fong Y, Warner SG (2020) Optimizing oncolytic viral design to enhance antitumor efficacy: progress and challenges. Cancers (Basel) 12(6):1699

    Article  CAS  Google Scholar 

  • Chen R, Ganesan A, Okoye I, Arutyunova E, Elahi S, Lemieux MJ, Barakat K (2020) Targeting B7–1 in immunotherapy. Med Res Rev 40(2):654–682

    Article  PubMed  CAS  Google Scholar 

  • Chesney J, Puzanov I, Collichio F et al (2018) Randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced. Unresectable Melanoma J Clin Oncol 36(17):1658–1667

    Article  PubMed  CAS  Google Scholar 

  • Ch’ng WC, Stanbridge EJ, Yusoff K, Shafee N (2013) The oncolytic activity of Newcastle disease virus in clear cell renal carcinoma cells in normoxic and hypoxic conditions: the interplay between von Hippel-Lindau and interferon-β signaling. J Interferon Cytokine Res 33(7):346–354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dalio RJD, Magalhães DM, Rodrigues CM et al (2017) PAMPs, PRRs, effectors and R-genes associated with citrus-pathogen interactions. Ann Bot 119(5):749–774

    PubMed  PubMed Central  CAS  Google Scholar 

  • Davydova J, Gavrikova T, Brown EJ et al (2010) In vivo bioimaging tracks conditionally replicative adenoviral replication and provides an early indication of viral antitumor efficacy. Cancer Sci 101(2):474–481

    Article  PubMed  CAS  Google Scholar 

  • Di Piazza M, Mader C, Geletneky K et al (2007) Cytosolic activation of cathepsins mediates parvovirus H-1-induced killing of cisplatin and TRAIL-resistant glioma cells. J Virol 81(8):4186–4198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Elankumaran S, Chavan V, Qiao D et al (2010) Type I interferon-sensitive recombinant newcastle disease virus for oncolytic virotherapy. J Virol 84(8):3835–3844

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fuerer C, Iggo R (2004) 5-Fluorocytosine increases the toxicity of Wnt-targeting replicating adenoviruses that express cytosine deaminase as a late gene. Gene Ther 11(2):142–151

    Article  PubMed  CAS  Google Scholar 

  • Garg AD, Galluzzi L, Apetoh L et al (2015) Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol 6:588

    Article  PubMed  PubMed Central  Google Scholar 

  • Guedan S, Alemany R (2018) CAR-T cells and oncolytic viruses: joining forces to overcome the solid tumor challenge. Front Immunol 9:2460

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gujar SA, Clements D, Dielschneider R, Helson E, Marcato P, Lee PW (2014) Gemcitabine enhances the efficacy of reovirus-based oncotherapy through anti-tumour immunological mechanisms. Br J Cancer 110(1):83–93

    Article  PubMed  CAS  Google Scholar 

  • Gujar S, Pol JG, Kim Y, Lee PW, Kroemer G (2018) Antitumor benefits of antiviral immunity: an underappreciated aspect of oncolytic virotherapies. Trends Immunol 39(3):209–221

    Article  PubMed  CAS  Google Scholar 

  • Güler A, Lopez Venegas M, Adankwah E, Mayatepek E, Nausch N, Jacobsen M (2020) Suppressor of cytokine signalling 3 is crucial for interleukin-7 receptor re-expression after T-cell activation and interleukin-7 dependent proliferation. Eur J Immunol 50(2):234–244

    Article  PubMed  CAS  Google Scholar 

  • Heo SK, Ju SA, Kim GY et al (2012) The presence of high level soluble herpes virus entry mediator in sera of gastric cancer patients. Exp Mol Med 44(2):149–158

    Article  PubMed  CAS  Google Scholar 

  • Huajun J, Saiqun L, Jiahe Y et al (2011) Use of MicroRNA Let-7 to control the replication specificity of oncolytic adenovirus in hepatocellular carcinoma cells. PLoS ONE 6(7):21307

    Article  CAS  Google Scholar 

  • Ip WH, Dobner T (2020) Cell transformation by the adenovirus oncogenes E1 and E4. FEBS Lett 594(12):1848–1860

    Article  PubMed  CAS  Google Scholar 

  • Jain RK, Stylianopoulos T (2010) Delivering nanomedicine to solid tumors. Nat Rev Clin Oncol 7(11):653–664

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Johnson DB, Puzanov I, Kelley MC (2015) Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 7(6):611–619

    Article  PubMed  CAS  Google Scholar 

  • Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659

    Article  PubMed  CAS  Google Scholar 

  • Keppler SJ, Rosenits K, Koegl T, Vucikuja S, Aichele P (2012) Signal 3 cytokines as modulators of primary immune responses during infections: the interplay of type I IFN and IL-12 in CD8 T cell responses. PLoS ONE 7(7):e40865

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim M, Chung YH, Johnston RN (2007) Reovirus and tumor oncolysis. J Microbiol 45(3):187–192

    PubMed  CAS  Google Scholar 

  • Kuczynski EA, Vermeulen PB, Pezzella F, Kerbel RS, Reynolds AR (2019) Vessel co-option in cancer. Nat Rev Clin Oncol 16(8):469–493

    Article  CAS  PubMed  Google Scholar 

  • Lichty BD, Breitbach CJ, Stojdl DF, Bell JC (2014) Going viral with cancer immunotherapy. Nat Rev Cancer 14(8):559–567

    Article  PubMed  CAS  Google Scholar 

  • Lolkema MP, Arkenau HT, Harrington K et al (2011) A phase I study of the combination of intravenous reovirus type 3 Dearing and gemcitabine in patients with advanced cancer. Clin Cancer Res 17(3):581–588

    Article  PubMed  CAS  Google Scholar 

  • Mahalingam D, Goel S, Aparo S et al (2018) A phase II study of pelareorep (REOLYSIN®) in combination with gemcitabine for patients with advanced pancreatic adenocarcinoma. Cancers (Basel) 10(6):160

    Article  CAS  Google Scholar 

  • Marchini A, Daeffler L, Pozdeev VI, Angelova A, Rommelaere J (2019) Immune conversion of tumor microenvironment by oncolytic viruses: the protoparvovirus H-1PV case study. Front Immunol 10:1848

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Melero I, Hervas-Stubbs S, Glennie M, Pardoll DM, Chen L (2007) Immunostimulatory monoclonal antibodies for cancer therapy. Nat Rev Cancer 7(2):95–106

    Article  PubMed  CAS  Google Scholar 

  • Navarro SA, Carrillo E, Griñán-Lisón C, Martín A, Perán M, Marchal JA, Boulaiz H (2016) Cancer suicide gene therapy: a patent review. Expert Opin Ther Pat 26(9):1095–1104

    Article  PubMed  CAS  Google Scholar 

  • Oh E, Hong J, Kwon OJ, Yun CO (2018) A hypoxia- and telomerase-responsive oncolytic adenovirus expressing secretable trimeric TRAIL triggers tumour-specific apoptosis and promotes viral dispersion in TRAIL-resistant glioblastoma. Sci Rep 8(1):1420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ontiveros F, Wilson EB, Livingstone AM (2011) Type I interferon supports primary CD8+T-cell responses to peptide-pulsed dendritic cells in the absence of CD4+T-cell help. Immunology 132(4):549–558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pesonen S, Nokisalmi P, Ristimaki A et al (2008) Treatment of cancer patients with capsid modified double controlled oncolytic adenovirus Ad5/3-Cox2L-D24. Can Res 68(9):2818

    Google Scholar 

  • Puzanov I, Milhem MM, Minor D et al (2016) Talimogene laherparepvec in combination with ipilimumab in previously untreated, unresectable stage IIIB-IV melanoma. J Clin Oncol 34(22):2619–2626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribas A, Dummer R, Puzanov I et al (2017) Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 170(6):1109-1119.e10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schenk EL, Mandrekar SJ, Dy GK, Aubry MC, Tan AD, Dakhil SR, Sachs BA, Nieva JJ, Bertino E, Lee Hann C, Schild SE, Wadsworth TW, Adjei AA, Molina JR (2020) A randomized double-blind phase II study of the Seneca Valley Virus (NTX-010) versus placebo for patients with extensive-stage SCLC (ES SCLC) who were stable or responding after at least four cycles of platinum-based chemotherapy: north central cancer treatment group (Alliance) N0923 study. J Thorac Oncol 15(1):110–119

    Article  PubMed  CAS  Google Scholar 

  • Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168(4):707–723

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharp DW, Lattime EC (2016) Recombinant poxvirus and the tumor microenvironment: oncolysis, immune regulation and immunization. Biomedicines 4(3):19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shen Y, Nemunaitis J (2006) Herpes simplex virus 1 (HSV-1) for cancer treatment. Cancer Gene Ther 13(11):975–992

    Article  PubMed  CAS  Google Scholar 

  • Shi Q, Zhang P, Zhang J et al (2009) Adenovirus-mediated brain-derived neurotrophic factor expression regulated by hypoxia response element protects brain from injury of transient middle cerebral artery occlusion in mice. Neurosci Lett 465(3):220–225

    Article  PubMed  CAS  Google Scholar 

  • Shi T, Song X, Wang Y, Liu F, Wei J (2020) Combining oncolytic viruses with cancer immunotherapy: establishing a new generation of cancer treatment. Front Immunol 28(11):683

    Article  CAS  Google Scholar 

  • Sobhanimonfared F, Bamdad T, Sadigh ZA, Choobin H (2020) Virus specific tolerance enhanced efficacy of cancer immuno-virotherapy. Microb Pathog 140:103957

    Article  PubMed  CAS  Google Scholar 

  • Twumasi-Boateng K, Pettigrew JL, Kwok YYE, Bell JC, Nelson BH (2018) Oncolytic viruses as engineering platforms for combination immunotherapy. Nat Rev Cancer 18(7):419–432

    Article  PubMed  CAS  Google Scholar 

  • Vaupel P (2004) The role of hypoxia-induced factors in tumor progression. Oncologist 9(Suppl 5):10–17

    Article  PubMed  CAS  Google Scholar 

  • Vogel I, Kasran A, Cremer J et al (2015) CD28/CTLA-4/B7 costimulatory pathway blockade affects regulatory T-cell function in autoimmunity. Eur J Immunol 45(6):1832–1841

    Article  PubMed  CAS  Google Scholar 

  • Wing A, Fajardo CA, Posey AD Jr et al (2018) Improving CART-cell therapy of solid tumors with oncolytic virus-driven production of a bispecific T-cell engager. Cancer Immunol Res 6(5):605–616

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi S, Maida Y, Yasukawa M, Kato T, Yoshida M, Masutomi K (2014) Eribulin mesylate targets human telomerase reverse transcriptase in ovarian cancer cells. PLoS ONE 9(11):e112438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, Thai V, McCabe A, Jones M, MacNamara KC (2014) Type I interferons promote severe disease in a mouse model of lethal ehrlichiosis. Infect Immun 82(4):1698–1709

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang W, Ge K, Zhao Q et al (2015) A novel oHSV-1 targeting telomerase reverse transcriptase-positive cancer cells via tumor-specific promoters regulating the expression of ICP4. Oncotarget 6(24):20345–20355

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Rao XM, Snodgrass C et al (2005) Adenoviral E1a expression levels affect virus-selective replication in human cancer cells. Cancer Biol Ther 4(11):1255–1262

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 81870821, 82071187 Sponsor: J Xu) and by grants from the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20151347, Sponsor: F Yu).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. FY and HS had the idea for the article, YG, YW and TH performed the literature search, data analysis and draft, and XW, JX and QX critically revised the work.

Corresponding authors

Correspondence to Feng Yu or Haifeng Shi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Wu, Y., Huan, T. et al. The application of oncolytic viruses in cancer therapy. Biotechnol Lett 43, 1945–1954 (2021). https://doi.org/10.1007/s10529-021-03173-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10529-021-03173-3

Keywords

Navigation