Skip to main content
Log in

Marine macroalga-associated heterotrophic Bacillus velezensis: a novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens

  • Original Paper
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Increased prevalence of microbial resistance and development of drug-resistant pathogens have triggered an urge among researchers to discover potential antimicrobial compounds, particularly from the marine habitat. The present study highlights the cultivable diversity and bioactivities of heterotrophic bacteria associated with marine macroalgae of southeast Indian coastal region. Culture-dependent isolation method resulted in 40 isolates, in which greater part of the isolates represented Gammaproteobacteria (62%) followed by that comprised of the phylum Firmicutes. One of the most active strains isolated from a macroalga, Laurencia papillosa, was characterized based on the integrated phenotypic and genotypic analysis as Bacillus velezensis MBTDLP1 MTCC 13048, with an inhibition zone of about 35 mm against methicillin-resistant Staphylococcus aureus (MRSA), was selected for bioprospecting studies. Type-I pks gene (MT394492) of 700 bp could be amplified from the heterotrophic B. velezensis. The bacterium exhibited siderophore production and possessed genes implicated in the biosynthesis of siderophore type of metabolites exhibiting 99% similarity with other GenBank sequences in BLAST search. B. velezensis exhibited promising anti-infective properties against methicillin-resistant Staphylococcus aureus (minimum inhibitory concentration 15 µg/mL), and the activities were positively correlated (r2 > 0.9) with iron-chelating activities. Chemical investigation of the organic extract of B. velezensis MBTDLP1 characterized a macrocyclic polyketide exhibiting prospective antibacterial potential against methicillin-resistant S. aureus (MIC 0.38 µg/mL), than that exhibited by positive control chloramphenicol (6.25 µg/mL). Significant antibacterial activity against drug-resistant bacteria combined with the presence of genes coding for bioactive secondary metabolites revealed that this marine symbiotic bacterium could be used against emerging antibiotic resistance.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Achard ME, Chen KW, Sweet MJ, Watts RE, Schroder K, Schembri MA, McEwan AG (2013) An antioxidant role for catecholate siderophores in Salmonella. Biochem J 454(3):543–549

    Article  CAS  PubMed  Google Scholar 

  • Aleti G, Sessitsch A, Brader G (2015) Genome mining: prediction of lipopeptides and polyketides from Bacillus and related Firmicutes. Comput Struct Biotechnol J 13:192–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andryukov B, Mikhailov V, Besednova N (2019) The biotechnological potential of secondary metabolites from marine bacteria. J Mar Sci Eng 7(6):176

    Article  Google Scholar 

  • Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45(4):493–496

    Article  CAS  PubMed  Google Scholar 

  • Blin K, Shaw S, Steinke K, Villebro R, Ziemert N, Lee SY, Medema MH, Weber T (2019) AntiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res 47(W1):W81–W87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brinkmann CM, Kearns PS, Evans-Illidge E, Kurtbӧke Dİ (2017) Diversity and bioactivity of marine bacteria associated with the sponges Candidaspongia flabellata and Rhopaloeides odorabile from the Great Barrier Reef in Australia. Diversity 9(3):39

    Article  CAS  Google Scholar 

  • Burgess JG, Jordan EM, Bregu M, Mearns-Spragg A, Boyd KG (1999) Microbial antagonism: a neglected avenue of natural products research. J Biotechnol 70(1–3):27–32

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Thilakan B, Raola VK (2017) Antimicrobial polyketide furanoterpenoids from seaweed-associated heterotrophic bacterium Bacillus subtilis MTCC 10403. Phytochemistry 142:112–125

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Kizhakkekalam VK, Joy M, Chakraborty RD (2020) Moving away from traditional antibiotic treatment: can macrocyclic lactones from marine macroalga-associated heterotroph be the alternatives? Appl Microbiol Biotechnol 104(16):7117–7130

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty K, Kizhakkekalam VK, Joy M (2021) Macrocyclic polyketides with siderophore mode of action from marine heterotrophic Shewanella algae: prospective anti-infective leads attenuate drug-resistant pathogens. J Appl Microbiol 130(5):1552–1570

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1–2):27–37

    Article  CAS  PubMed  Google Scholar 

  • Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H (2005) Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by Intact-Cell-MALDI–TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol 67:539–548

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Thomas T, Kjelleberg S (2008) Unlocking the diversity and biotechnological potential of marine surface associated microbial communities. Curr Opin Microbiol 11:219–225

    Article  CAS  PubMed  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37(3):462–476

    Article  CAS  PubMed  Google Scholar 

  • El-Moneam NM, El-Assar SA, Shreadah MA, Adam A (2017) Isolation, identification and molecular screening of Pseudomonas sp. metabolic pathways nrps and pks associated with the Red Sea sponge, Hyrtios aff. erectus, Egypt. J Pure Appl Microbiol 11(3):1299–1311

    Article  Google Scholar 

  • El-Shafay SM, Ali SS, El-Sheekh MM (2016) Antimicrobial activity of some seaweeds species from Red sea, against multidrug resistant bacteria. Egypt J Aquat Res 42(1):65–74

    Article  Google Scholar 

  • Franco-Duarte R, Černáková L, Kadam S, Kaushik KS, Salehi B, Bevilacqua A, Corbo MR, Antolak H, Dybka-Stępień K, Leszczewicz M, Relison Tintino S, Alexandrino de Souza VC, Sharifi-Rad J, Melo Coutinho HD, Martins N, Rodrigues CF (2019) Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms 7(5):130

    Article  CAS  PubMed Central  Google Scholar 

  • Ghyselinck J, van Hoorde K, Hoste B, Heylen K, De Vos P (2011) Evaluation of MALDI–TOF MS as a tool for high-throughput dereplication. J Microbiol Methods 86(3):327–336

    Article  CAS  PubMed  Google Scholar 

  • Goecke F, Labes A, Wiese J, Imhoff JF (2010) Chemical interactions between marine macroalgae and bacteria. Mar Ecol Prog Ser 409:267–299

    Article  CAS  Google Scholar 

  • Gram L, Melchiorsen J, Spanggaard B, Huber I, Nielsen TF (1999) Inhibition of Vibrio anguillarum by Pseudomonas fluorescens AH2, a possible probiotic treatment of fish. Appl Environ Microbiol 65(3):969–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gülçin I (2007) Comparison of in vitro antioxidant and antiradical activities of l-tyrosine and l-dopa. Amino Acids 32(3):431–438

    Article  PubMed  CAS  Google Scholar 

  • Hamidi M, Kozani PS, Kozani PS, Pierre G, Michaud P, Delattre C (2019) Marine bacteria versus microalgae: who is the best for biotechnological production of bioactive compounds with antioxidant properties and other biological applications? Mar Drugs 18(1):28

    Article  PubMed Central  CAS  Google Scholar 

  • Imamura N, Nishijima M, Takadera T, Adachi K, Sakai M, Sano H (1997) New anticancer antibiotics pelagiomicins, produced by a new marine bacterium Pelagiobacter variabilis. J Antibiot (Tokyo) 50(1):8–12

    Article  CAS  Google Scholar 

  • Jamal MT, Morris PC, Hansen R, Jamieson DJ, Burgess JG, Austin B (2006) Recovery and characterization of a 30.7-kDa protein from Bacillus licheniformis associated with inhibitory activity against methicillin-resistant Staphylococcus aureus, vancomycin-resistant Enterococci and Listeria monocytogenes. Mar Biotechnol (NY) 8(6):587–592

    Article  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8(3):275–282

    CAS  PubMed  Google Scholar 

  • Kanagasabhapathy M, Sasaki H, Nagata S (2008) Phylogenetic identification of epibiotic bacteria possessing antimicrobial activities isolated from red algal species of Japan. World J Microbiol Biotechnol 24:2315–2321

    Article  CAS  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K (2019) Pharmacological properties of marine macroalgae-associated heterotrophic bacteria. Arch Microbiol 201(4):505–518

    Article  CAS  PubMed  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K (2020) Marine macroalgae-associated heterotrophic Firmicutes and Gammaproteobacteria: prospective anti-infective agents against multidrug resistant pathogens. Arch Microbiol 202(4):905–920

    Article  CAS  PubMed  Google Scholar 

  • Kizhakkekalam VK, Chakraborty K, Joy M (2020) Oxygenated elansolid-type of polyketide spanned macrolides from a marine heterotrophic Bacillus as prospective antimicrobial agents against multidrug-resistant pathogens. Int J Antimicrob Agents 55(3):105892

    Article  CAS  PubMed  Google Scholar 

  • Kramer J, Özkaya Ö, Kümmerli R (2020) Bacterial siderophores in community and host interactions. Nat Rev Microbiol 18(3):152–163

    Article  CAS  PubMed  Google Scholar 

  • Krieg NR, Holt JG (1984) Bergey’s manual of systematic bacteriology, vol 1. Williams and Wilkins Co, Baltimore, pp 161–172

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35(6):1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lemos ML, Toranzo AE, Barja JL (1985) Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb Ecol 11(2):149–163

    Article  CAS  PubMed  Google Scholar 

  • Liu M, El-Hossary EM, Oelschlaeger TA, Donia MS, Quinn RJ, Abdelmohsen UR (2019) Potential of marine natural products against drug-resistant bacterial infections. Lancet Infect Dis 19(7):e237–e245

    Article  PubMed  Google Scholar 

  • Louden BC, Haarmann D, Lynne AM (2011) Use of blue agar CAS assay for siderophore detection. J Microbiol Biol Educ 12(1):51–53

    Article  PubMed  PubMed Central  Google Scholar 

  • Major JL, Bagchi RA, Pires da Silva J (2020) Application of microRNA database mining in biomarker discovery and identification of therapeutic targets for complex disease. Methods Protoc 4(1):5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Penesyan A, Marshall-Jones Z, Holmstrom C, Kjelleberg S, Egan S (2009) Antimicrobial activity observed among cultured marine epiphytic bacteria reflects their potential as a source of new drugs. FEMS Microbiol Ecol 69(1):113–124

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro M, Simões M (2019) Advances in the antimicrobial and therapeutic potential of siderophores. Environ Chem Lett 17:1485–1494

    Article  CAS  Google Scholar 

  • Rütschlin S, Gunesch S, Böttcher T (2017) One enzyme, three metabolites: Shewanella algae controls siderophore production via the cellular substrate pool. Cell Chem Biol 24(5):598–604

    Article  PubMed  CAS  Google Scholar 

  • Schirmer A, Gadkari R, Reeves CD, Ibrahim F, DeLong EF, Hutchinson CR (2005) Metagenomic analysis reveals diverse polyketide synthase gene clusters in microorganisms associated with the marine sponge Discodermia dissoluta. Appl Environ Microbiol 71(8):4840–4849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva A, Silva SA, Lourenço-Lopes C, Jimenez-Lopez C, Carpena M, Gullón P, Fraga-Corral M, Domingues VF, Barroso MF, Simal-Gandara J, Prieto MA (2020) Antibacterial use of macroalgae compounds against foodborne pathogens. Antibiotics (Basel) 9(10):712

    Article  CAS  Google Scholar 

  • Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI–TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791

    Article  PubMed  PubMed Central  Google Scholar 

  • Spitaels F, Wieme AD, Vandamme P (2016) MALDI–TOF MS as a novel tool for dereplication and characterization of microbiota in bacterial diversity studies. In: Demirev P, Sandrin TR (eds) Applications of mass spectrometry in microbiology: from strain characterization to rapid screening for antibiotic resistance. Springer International Publishing, Cham, pp 235–256

    Chapter  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Sun W, Wu W, Liu X, Zaleta-Pinet DA, Clark BR (2019) Bioactive compounds isolated from marine-derived microbes in China: 2009–2018. Mar Drugs 17(6):339

    Article  CAS  PubMed Central  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10(3):512–526

    CAS  PubMed  Google Scholar 

  • Theobald S, Vesth TC, Andersen MR (2019) Genus level analysis of PKS-NRPS and NRPS-PKS hybrids reveals their origin in aspergilli. BMC Genomics 20:847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Thilakan B, Chakraborty K, Chakraborty RD (2016) Antimicrobial properties of cultivable bacteria associated with seaweeds in the Gulf of Mannar on the southeast coast of India. Can J Microbiol 62(8):668–681

    Article  CAS  PubMed  Google Scholar 

  • Vijayalakshmi S, Ramasamy MS, Murugesh S, Murugan A (2008) Isolation and screening of marine associated bacteria from Tamil Nadu, Southeast coast of India for potential antibacterial activity. Ann Microbiol 58(4):605–609

    Article  Google Scholar 

  • Villarreal-Gómez LJ, Soria-Mercado IE, Guerra-Rivas G, Ayala-Sánchez NE (2010) Antibacterial and anticancer activity of seaweeds and bacteria associated with their surface. Rev Biol Mar Oceanogr 45(2):267–275

    Article  Google Scholar 

  • Wang H, Fewer DP, Holm L, Rouhiainen L, Sivonen K (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci USA 111(25):9259–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiese J, Thiel V, Nagel K, Staufenberger T, Imhoff JF (2009) Diversity of antibiotic-active bacteria associated with the brown alga Laminaria saccharina from the Baltic Sea. Mar Biotechnol (NY) 11(2):287–300

    Article  CAS  Google Scholar 

  • Winter JM, Chiou G, Bothwell IR, Xu W, Garg NK, Luo M, Tang Y (2013) Expanding the structural diversity of polyketides by exploring the cofactor tolerance of an inline methyltransferase domain. Org Lett 15(14):3774–3777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Wang J, Ji J, Zhang J, Chen L, Zhang R (2015) Bacterial communities in marine aerosols revealed by 454 pyrosequencing of the 16S rRNA gene. J Atmos Sci 72(8):2997–3008

    Article  Google Scholar 

  • Zhang W, Zhang F, Li Z, Miao X, Meng Q, Zhang X (2009) Investigation of bacteria with polyketide synthase genes and antimicrobial activity isolated from South China Sea sponges. J Appl Microbiol 107(2):567–575

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Yang N, Zeng R (2008) Phylogenetic analysis of type I polyketide synthase and nonribosomal peptide synthetase genes in Antarctic sediment. Extremophiles 12(1):97–105

    Article  CAS  PubMed  Google Scholar 

  • Zheng L, Han X, Chen HM, Lin W, Yan XJ (2005) Marine bacteria associated with marine macroorganism: the potential antimicrobial resources. Ann Microbiol 55(2):119–124

    CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Indian Council of Agricultural Research (ICAR) under the project titled as “Development of Bioactive Pharmacophores from Marine Organisms” (Grant Number MBT/HLT/SUB23). The research was partly funded by the College of Agriculture of Kerala Agricultural University, India under the B.Sc.–M.Sc. (Integrated) Biotechnology programme (Grant No. 2014-09-103). The authors thank the Director, Central Marine Fisheries Research Institute, Course Director [B.Sc.–M.Sc. (Integrated) Biotechnology programme] and Head, Department of Plant Biotechnology, College of Agriculture, Kerala Agricultural University, Thiruvanthapuram, for providing with necessary support. Thanks are due to the Head, Marine Biotechnology Division, Central Marine Fisheries Research Institute for facilitating the research activities.

Author information

Authors and Affiliations

Authors

Contributions

KC and AF conceived and designed research, acquired funds, and conducted experiments. KC, RDC, SA, and VKK analyzed data. KC, RDC, SKP, and VKK drafted the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Kajal Chakraborty.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors. This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by R. El-Sayed.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 1553 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Francis, A., Chakraborty, R.D. et al. Marine macroalga-associated heterotrophic Bacillus velezensis: a novel antimicrobial agent with siderophore mode of action against drug-resistant nosocomial pathogens. Arch Microbiol 203, 5561–5575 (2021). https://doi.org/10.1007/s00203-021-02513-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-021-02513-1

Keywords

Navigation