Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Borophene synthesis beyond the single-atomic-layer limit

Abstract

Synthetic two-dimensional (2D) materials have no bulk counterparts and typically exist as single atomic layers due to substrate-stabilized growth. Multilayer formation, although broadly sought for structure and property tuning, has not yet been achieved in the case of synthetic 2D boron: that is, borophene1,2. Here, we experimentally demonstrate the synthesis of an atomically well-defined borophene polymorph beyond the single-atomic-layer (SL) limit. The structure of this bilayer (BL) borophene is consistent with two covalently bonded α-phase layers (termed BL-α borophene) as evidenced from bond-resolved scanning tunnelling microscopy, non-contact atomic force microscopy and density functional theory calculations. While the electronic density of states near the Fermi level of BL-α borophene is similar to SL borophene polymorphs, field-emission resonance spectroscopy reveals distinct interfacial charge transfer doping and a heightened local work function exceeding 5 eV. The extension of borophene polymorphs beyond the SL limit significantly expands the phase space for boron-based nanomaterials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Growth of BL borophene on Ag(111).
Fig. 2: Atomic-scale imaging of BL borophene.
Fig. 3: Lattice structure of BL-α borophene.
Fig. 4: Spectroscopic characterization of BL-α borophene.

Similar content being viewed by others

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data related to this paper may be requested from the authors.

References

  1. Mannix, A. J. et al. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350, 1513–1516 (2015).

    Article  CAS  Google Scholar 

  2. Feng, B. et al. Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563–568 (2016).

    Article  CAS  Google Scholar 

  3. Zhai, H.-J., Kiran, B., Li, J. & Wang, L.-S. Hydrocarbon analogues of boron clusters—planarity, aromaticity and antiaromaticity. Nat. Mater. 2, 827–833 (2003).

    Article  CAS  Google Scholar 

  4. Zhai, H.-J., Alexandrova, A. N., Birch, K. A., Boldyrev, A. I. & Wang, L.-S. Hepta- and octacoordinate boron in molecular wheels of eight- and nine-atom boron clusters: observation and confirmation. Angew. Chem. Int. Ed. Engl. 42, 6004–6008 (2003).

    Article  CAS  Google Scholar 

  5. Ogitsu, T., Schwegler, E. & Galli, G. β-Rhombohedral boron: at the crossroads of the chemistry of boron and the physics of frustration. Chem. Rev. 113, 3425–3449 (2013).

    Article  CAS  Google Scholar 

  6. Ogitsu, T. et al. Imperfect crystal and unusual semiconductor: boron, a frustrated element. J. Am. Chem. Soc. 131, 1903–1909 (2009).

    Article  CAS  Google Scholar 

  7. Mannix, A. J., Zhang, Z., Guisinger, N. P., Yakobson, B. I. & Hersam, M. C. Borophene as a prototype for synthetic 2D materials development. Nat. Nanotechnol. 13, 444–450 (2018).

    Article  CAS  Google Scholar 

  8. Liu, X., Zhang, Z., Wang, L., Yakobson, B. I. & Hersam, M. C. Intermixing and periodic self-assembly of borophene line defects. Nat. Mater. 17, 783–788 (2018).

    Article  CAS  Google Scholar 

  9. Liu, X. et al. Self-assembly of electronically abrupt borophene/organic lateral heterostructures. Sci. Adv. 3, e1602356 (2017).

    Article  Google Scholar 

  10. Liu, X. & Hersam, M. C. Borophene-graphene heterostructures. Sci. Adv. 5, eaax6444 (2019).

    Article  CAS  Google Scholar 

  11. Feng, B. et al. Dirac fermions in borophene. Phys. Rev. Lett. 118, 096401 (2017).

    Article  Google Scholar 

  12. Kiraly, B. et al. Borophene synthesis on Au(111). ACS Nano 13, 3816–3822 (2019).

    Article  CAS  Google Scholar 

  13. Wu, R. et al. Large-area single-crystal sheets of borophene on Cu(111) surfaces. Nat. Nanotechnol. 14, 44–49 (2019).

    Article  CAS  Google Scholar 

  14. Li, W. et al. Experimental realization of honeycomb borophene. Sci. Bull. 63, 282–286 (2018).

    Article  CAS  Google Scholar 

  15. Vinogradov, N. A., Lyalin, A., Taketsugu, T., Vinogradov, A. S. & Preobrajenski, A. Single-phase borophene on Ir(111): formation, structure, and decoupling from the support. ACS Nano 13, 14511–14518 (2019).

    Article  CAS  Google Scholar 

  16. Tang, H. & Ismail-Beigi, S. Self-doping in boron sheets from first principles: a route to structural design of metal boride nanostructures. Phys. Rev. B 80, 134113 (2009).

    Article  Google Scholar 

  17. Zhang, Z., Yang, Y., Penev, E. S. & Yakobson, B. I. Elasticity, flexibility, and ideal strength of borophenes. Adv. Funct. Mater. 27, 1605059 (2017).

    Article  Google Scholar 

  18. Penev, E. S., Kutana, A. & Yakobson, B. I. Can two-dimensional boron superconduct? Nano Lett. 16, 2522–2526 (2016).

    Article  CAS  Google Scholar 

  19. Yang, J. et al. Interfacial properties of borophene contacts with two-dimensional semiconductors. Phys. Chem. Chem. Phys. 19, 23982–23989 (2017).

    Article  CAS  Google Scholar 

  20. Huang, Y., Shirodkar, S. N. & Yakobson, B. I. Two-dimensional boron polymorphs for visible range plasmonics: a first-principles exploration. J. Am. Chem. Soc. 139, 17181–17185 (2017).

    Article  CAS  Google Scholar 

  21. Zhang, X. et al. Borophene as an extremely high capacity electrode material for Li-ion and Na-ion batteries. Nanoscale 8, 15340–15347 (2016).

    Article  CAS  Google Scholar 

  22. Shukla, V., Wärnå, J., Jena, N. K., Grigoriev, A. & Ahuja, R. Toward the realization of 2D borophene based gas sensor. J. Phys. Chem. C 121, 26869–26876 (2017).

    Article  CAS  Google Scholar 

  23. Gao, N., Wu, X., Jiang, X., Bai, Y. & Zhao, J. Structure and stability of bilayer borophene: the roles of hexagonal holes and interlayer bonding. FlatChem 7, 48–54 (2018).

    Article  CAS  Google Scholar 

  24. Ma, F. et al. Graphene-like two-dimensional ionic boron with double Dirac cones at ambient condition. Nano Lett. 16, 3022–3028 (2016).

    Article  CAS  Google Scholar 

  25. Zhou, X.-F. et al. Two-dimensional magnetic boron. Phys. Rev. B 93, 085406 (2016).

    Article  Google Scholar 

  26. Xu, S.-G., Zheng, B., Xu, H. & Yang, X.-B. Ideal nodal line semimetal in a two-dimensional boron bilayer. J. Phys. Chem. C 123, 4977–4983 (2019).

    Article  CAS  Google Scholar 

  27. Zhong, H., Huang, K., Yu, G. & Yuan, S. Electronic and mechanical properties of few-layer borophene. Phys. Rev. B 98, 054104 (2018).

    Article  CAS  Google Scholar 

  28. Liu, X. et al. Geometric imaging of borophene polymorphs with functionalized probes. Nat. Commun. 10, 1642 (2019).

    Article  Google Scholar 

  29. Hapala, P. et al. Mechanism of high-resolution STM/AFM imaging with functionalized tips. Phys. Rev. B 90, 085421 (2014).

    Article  CAS  Google Scholar 

  30. Liu, X., Wang, L., Yakobson, B. I. & Hersam, M. C. Nanoscale probing of image-potential states and electron transfer doping in borophene polymorphs. Nano Lett. 21, 1169–1174 (2021).

    Article  CAS  Google Scholar 

  31. Karmodak, N. & Jemmis, E. D. Metal templates and boron sources controlling borophene structures: an ab initio study. J. Phys. Chem. C 122, 2268–2274 (2018).

    Article  CAS  Google Scholar 

  32. Zheng, B. et al. Highly effective work function reduction of α-borophene via caesium decoration: a first-principles investigation. Adv. Theory Simul. 3, 1900249 (2020).

    Article  CAS  Google Scholar 

  33. Lu, C.-I. et al. Graphite edge controlled registration of monolayer MoS2 crystal orientation. Appl. Phys. Lett. 106, 181904 (2015).

    Article  Google Scholar 

  34. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  35. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  36. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  37. Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  38. Krejčí, O., Hapala, P., Ondráček, M. & Jelínek, P. Principles and simulations of high-resolution STM imaging with a flexible tip apex. Phys. Rev. B 95, 045407 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

X.L., Q.L., M.S.R. and M.C.H. acknowledge support from the Office of Naval Research (ONR N00014−17-1-2993) and the National Science Foundation Materials Research Science and Engineering Center (NSF DMR-1720139). Q.R. and B.I.Y. acknowledge support from the Electronics Division of the US Army Research Office (W911NF-16-1-0255) and the Robert Welch Foundation (C-1590).

Author information

Authors and Affiliations

Authors

Contributions

X.L. and M.C.H. conceived the project. X.L., Q.L. and M.S.R. performed sample preparation and STM/FER/AFM measurements. Q.R. and B.I.Y. designed the models. Q.R. performed the DFT simulations. X.L. provided assistance with model construction. All authors contributed to data interpretation and manuscript writing.

Corresponding authors

Correspondence to Boris I. Yakobson or Mark C. Hersam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Ivan Bozovic and Guy Le Lay for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Li, Q., Ruan, Q. et al. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 21, 35–40 (2022). https://doi.org/10.1038/s41563-021-01084-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01084-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing