Skip to main content
Log in

Higher-order behaviour of two-point current correlators

  • Review
  • Published:
The European Physical Journal Special Topics Aims and scope Submit manuscript

Abstract

Estimates of higher-order contributions for perturbative series in QCD, in view of their asymptotic nature, are delicate, though indispensable for a reliable error assessment in phenomenological applications. In this work, the Adler function and the scalar correlator are investigated, and models for Borel transforms of their perturbative series are constructed, which respect general constraints from the operator product expansion and the renormalisation group. As a novel ingredient, the QCD coupling is employed in the so-called C-scheme, which has certain advantages. For the Adler function, previous results obtained directly in the \(\overline{\mathrm{MS}}\) scheme are supported. Corresponding results for the scalar correlation function are new. It turns out that the substantially larger perturbative corrections for the scalar correlator in \(\overline{\mathrm{MS}}\) are dominantly due to this scheme choice, and can be largely reduced through more appropriate renormalisation schemes, which are easy to realise in the C-scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For historical reasons, we shall speak about the “large-\(\beta _0\)” approximation, although in the notation employed in this work, the leading coefficient of the \(\beta \)-function is termed \(\beta _1\).

  2. It only depends on the scheme-invariant \(\beta \)-function coefficients \(\beta _1\) and \(\beta _2\).

  3. For notational simplicity, in the ensuing discussion we have dropped the superscript C in the C-scheme coupling \({\hat{a}}_Q^C\).

  4. This can also be inferred from the general form of an invariant, polynomial contribution in the C-scheme, which is presented in appendix B.

References

  1. J.C. Le-Guillou, J. Zinn-Justin, Large Order Behavior of Perturbation Theory (North-Holland, Amsterdam, 1990)

    Google Scholar 

  2. M. Beneke, Renormalons. Phys. Rept. 317, 1–142 (1999). arXiv:hep-ph/9807443

    Article  ADS  Google Scholar 

  3. S.L. Adler, Some simple vacuum polarization phenomenology: \(e^+e^-\rightarrow \,\) Hadrons. Phys. Rev. D 10, 3714 (1974)

    Article  ADS  Google Scholar 

  4. M. Beneke, M. Jamin, \(\alpha _s\) and the \(\tau \) hadronic width: fixed-order, contour-improved and higher-order perturbation theory. JHEP 0809, 044 (2008). arXiv: 0806.3156 [hep-ph]

    Article  ADS  Google Scholar 

  5. M. Beneke, D. Boito, M. Jamin, Perturbative expansion of \(\tau \) hadronic spectral function moments and \(\alpha _s\) extractions. JHEP 01, 125 (2013). arXiv:1210.8038 [hep-ph]

    Article  ADS  Google Scholar 

  6. D. Boito, M. Jamin, R. Miravitllas, Scheme variations of the QCD coupling and hadronic \(\tau \) decays. Phys. Rev. Lett. 117, 152001[arXiv: 1606.06175 [hep-ph]] (2016). arXiv:1606.06175 [hep-ph]

    Article  ADS  Google Scholar 

  7. M. Jamin, R. Miravitllas, Scalar correlator. Higgs decay into quarks, and scheme variations of the QCD coupling. JHEP 1610, 059 (2016). arXiv:1606.06166 [hep-ph]

    Article  ADS  Google Scholar 

  8. W.A. Bardeen, A.J. Buras, D.W. Duke, T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories. Phys. Rev. D 18, 3998 (1978)

    Article  ADS  Google Scholar 

  9. X.G. Wu, J.M. Shen, B.L. Du, S.J. Brodsky, Novel demonstration of the renormalization group invariance of the fixed-order predictions using the principle of maximum conformality and the \(C\)- scheme coupling. Phys. Rev. D 97, 094030 (2018). arXiv:1802.09154 [hep-ph]

    Article  ADS  Google Scholar 

  10. S.G. Gorishnii, A.L. Kataev, S.A. Larin, The \({{\cal{O}}}(\alpha _s^3)\) corrections to \(\sigma _{{\rm tot}}(e^+ e^- \rightarrow {\rm hadrons})\) and \({\Gamma }(\tau ^- \rightarrow \nu _\tau + {\rm hadrons})\) in QCD. Phys. Lett. B 259, 144 (1991)

    Article  ADS  Google Scholar 

  11. L.R. Surguladze, M.A. Samuel, Total hadronic cross-section in \(e^+ e^-\) annihilation at the four-loop level of perturbative QCD. Phys. Rev. Lett. 66, 560 (1991)

    Article  ADS  Google Scholar 

  12. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Hadronic \(Z\)- and \(\tau \)-Decays in Order \(\alpha _s^4\). Phys. Rev. Lett. 101, 012002 (2008). arXiv:0801.1821 [hep-ph]

    Article  ADS  Google Scholar 

  13. D. Boito, M. Jamin, R. Miravitllas, Scheme variations of the QCD coupling. EPJ Web Conf. 137, 05007 (2017). arXiv:1612.01792 [hep-ph

    Article  Google Scholar 

  14. S.G. Gorishnii, A.L. Kataev, S.A. Larin, L.R. Surguladze, Corrected three loop QCD correction to the correlator of the quark scalar currents and \(\Gamma _{\rm tot}(H_0\rightarrow {\rm hadrons})\). Mod. Phys. Lett. A 5, 2703 (1990)

    Article  ADS  Google Scholar 

  15. K.G. Chetyrkin, Correlator of the quark scalar currents and \(\Gamma _{\rm tot}(H_0\rightarrow {\rm hadrons})\) at \({{\cal{O}}}(\alpha _s^3)\) in pQCD. Phys. Lett. B 390, 309 (1997). arXiv:hep-ph/9608318

    Article  ADS  Google Scholar 

  16. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Scalar correlator at \({{\cal{O}}}(\alpha _s^4)\), Higgs decay into \(b\)- quarks and bounds on the light quark masses. Phys. Rev. Lett. 96, 012003 (2006). arXiv:hep-ph/0511063

    Article  ADS  Google Scholar 

  17. D.J. Broadhurst, Chiral symmetry breaking and perturbative QCD. Phys. Lett. 101B, 423 (1981)

    Article  ADS  Google Scholar 

  18. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop fermion anomalous dimension for a general gauge group from four-loop massless propagators. JHEP 1704, 119 (2017). arXiv:1702.01458 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  19. M. Jamin, R. Miravitllas, Absence of even-integer \(\zeta \)- function values in Euclidean physical quantities in QCD. Phys. Lett. B 779, 452 (2018). arXiv:1711.00787 [hep-ph]

    Article  ADS  Google Scholar 

  20. J. Davies, A. Vogt, Absence of \(\pi ^2\) terms in physical anomalous dimensions in DIS: verification and resulting predictions. Phys. Lett. B 776, 189 (2018). arXiv:1711.05267 [hep-ph]

    Article  ADS  Google Scholar 

  21. P.A. Baikov, K.G. Chetyrkin, The structure of generic anomalous dimensions and no-\(\pi \)theorem for massless propagators (2019). arXiv:1804.10088 [hep-ph]

  22. D. Boito, D. Hornung, M. Jamin, Anomalous dimensions of four-quark operators and renormalon structure of mesonic two-point correlators. JHEP 1512, 090 (2015). arXiv:1510.03812 [hep-ph]

    ADS  Google Scholar 

  23. M. Jamin, The scalar gluonium correlator: large-\(\beta _0\) and beyond. JHEP 1204, 099 (2012). arXiv:1202.1169 [hep-ph]

    Article  ADS  Google Scholar 

  24. L.S. Brown, L.G. Yaffe, C.X. Zhai, Large-order perturbation theory for the electromagnetic current current correlation function. Phys. Rev. D 46, 4712 (1992). arXiv: hep-ph/9205213

    Article  ADS  Google Scholar 

  25. G. Grunberg, The renormalization scheme invariant Borel transform and the QED renormalons. Phys. Lett. B 304, 183 (1993)

    Article  ADS  Google Scholar 

  26. D. Boito, F. Oliani, Renormalons in integrated spectral function moments and \(\alpha _s\) extractions. Phys. Rev. D 101, 074003 (2020). arXiv:2002.12419 [hep-ph]

    Article  ADS  Google Scholar 

  27. M. Beneke, Large-order perturbation theory for a physical quantity. Nucl. Phys. B 405, 424 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  28. D.J. Broadhurst, Large-\(N\) expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops. Z. Phys. C 58, 339 (1993)

  29. D.J. Broadhurst, A.L. Kataev, C.J. Maxwell, Renormalons and multiloop estimates in scalar correlators, Higgs decay and quark-mass sum rule. Nucl. Phys. B 592, 247 (2001). arXiv:hep-ph/0007152

    Article  ADS  Google Scholar 

  30. V.P. Spiridonov, K.G. Chetyrkin, Nonleading mass corrections and renormalization of the operators \(m{\bar{\psi }}\psi \) and \(G_{\mu \nu }^2\). Sov. J. Nucl. Phys. 47, 522 (1988) [Yad. Fiz. 47 (1988) 818]

  31. L.R. Surguladze, F.V. Tkachov, Two-loop effects in QCD sum rules for light mesons. Nucl. Phys. B 331, 35 (1990)

    Article  ADS  Google Scholar 

  32. D. Boito, P. Masjuan, F. Oliani, Higher-order QCD corrections to hadronic \(\tau \) decays from Padé approximants. JHEP 08, 075 (2018). arXiv:1807.01567 [hep-ph]

    Article  ADS  Google Scholar 

  33. I. Caprini, Higher-order perturbative coefficients in QCD from series acceleration by conformal mappings. Phys. Rev. D 100, 056019 (2019). arXiv:1908.06632 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  34. M. Jamin, R. Miravitllas, (2021) (work in progress)

  35. O.V. Tarasov, A.A. Vladimirov, Y.A. Zharkov, The Gell–Mann-Low function of QCD in the three-loop approximation. Phys. Lett. B 93, 429 (1980)

    Article  ADS  Google Scholar 

  36. T. van Ritbergen, J.A.M. Vermaseren, S.A. Larin, The four-loop \(\beta \)-function in quantum chromodynamics. Phys. Lett. B 400, 379 (1997). arXiv:hep-ph/9701390

    Article  ADS  Google Scholar 

  37. M. Czakon, The four-loop QCD \(\beta \)-function and anomalous dimensions. Nucl. Phys. B 710, 485 (2005). arXiv:hep-ph/0411261

    Article  ADS  Google Scholar 

  38. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Five-loop running of the QCD coupling constant (2019). arXiv:1606.08659 [hep-ph]

  39. J.A.M. Vermaseren, S.A. Larin, T. van Ritbergen, The four-loop quark mass anomalous dimension and the invariant quark mass. Phys. Lett. B 405, 327 (1997). arXiv:hep-ph/9703284

    Article  ADS  Google Scholar 

  40. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Quark mass and field anomalous dimensions to \({{\cal{O}}}(\alpha _s^5)\). JHEP 1410, 76 (2014). arXiv:1402.6611 [hep-ph]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Partial collaboration in this work with Ramon Miravitllas, and interesting discussions with Andre Hoang, are gratefully acknowledged. The author would also like to thank the FWF Austrian Science Fund under the Project No. P28535-N27 for partial support, and the particle physics group at the University of Vienna, where part of this work was completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Jamin.

Appendices

Appendix A: Renormalisation group functions and dependent coefficients

In our notation, the QCD \(\beta \)-function and mass anomalous dimension are defined as:

$$\begin{aligned}&-\,\mu \,\frac{\mathrm{d}a}{\mathrm{d}\mu } \equiv \beta (a) \,=\, \beta _1\,a^2 + \beta _2\,a^3 + \beta _3\,a^4 + \beta _4\,a^5 + \cdots \,, \end{aligned}$$
(93)
$$\begin{aligned}&{\quad }-\,\frac{\mu }{m}\,\frac{\mathrm{d}m}{\mathrm{d}\mu } \equiv \gamma _m(a) \,=\, \gamma _m^{(1)}\,a + \gamma _m^{(2)}\,a^2 \nonumber \\&\qquad \qquad + \gamma _m^{(3)}\,a^3 + \gamma _m^{(4)}\,a^4 + \cdots \,. \end{aligned}$$
(94)

It is assumed that we work in a mass-independent renormalisation scheme and in this study throughout the modified minimal subtraction scheme \({\overline{\mathrm{MS}}}\) is used. To make the presentation self-contained, below the known coefficients of the \(\beta \)-function and mass anomalous dimension in the given conventions shall be provided. Numerically, for \(N_c=3\) and \(N_f=3\), the first five coefficients of the \(\beta \)-function are given by [35,36,37,38]

$$\begin{aligned} \beta _1= & {} \frac{9}{2} \,, \quad \beta _2 \,=\, 8 \,, \quad \beta _3 \,=\, \frac{3863}{192} \,, \nonumber \\&\beta _4 \,=\, \frac{140599}{2304} + \frac{445}{16}\,\zeta _3 \,, \nonumber \\ {\quad }\beta _5= & {} \frac{139857733}{663552} + \frac{11059213}{27648}\,\zeta _3\nonumber \\&- \frac{36045}{512}\,\zeta _4 - \frac{534385}{1536}\,\zeta _5 \,, \end{aligned}$$
(95)

and the first five for \(\gamma _m(a)\) are found to be [39, 40]

$$\begin{aligned} \gamma _m^{(1)}= & {} 2 \,, \quad \gamma _m^{(2)} \,=\, \frac{91}{12} \,, \quad \gamma _m^{(3)} \,=\, \frac{8885}{288} - 5\,\zeta _3 \,, \nonumber \\ \gamma _m^{(4)}= & {} \frac{2977517}{20736} - \frac{9295}{216}\,\zeta _3 + \frac{135}{8}\,\zeta _4 - \frac{125}{6}\,\zeta _5 \,, \nonumber \\ \gamma _m^{(5)}= & {} \frac{156509815}{248832} - \frac{23663747}{62208}\,\zeta _3 + 170\,\zeta _3^2 + \frac{23765}{128}\,\zeta _4 \nonumber \\&- \frac{22625465}{31104}\,\zeta _5 + \frac{1875}{16}\,\zeta _6 + \frac{118405}{288}\,\zeta _7 \,. \end{aligned}$$
(96)

The dependent perturbative coefficients \(d_{n,k}\) with \(k>1\) can be expressed in terms of the independent coefficients \(d_{n,1}\), and coefficients of the QCD \(\beta \)-function and mass anomalous dimension. In particular, the coefficients \(d_{n,2}\), which are required in Eq. (33), take the form

$$\begin{aligned} d_{n,2} \,=\, -\,\frac{1}{2}\,\gamma _m^{(n)} d_{0,1} - \frac{1}{4} \sum \limits _{k=1}^{n-1} \big ( 2\gamma _m^{(n-k)} + k\,\beta _{n-k} \big ) d_{k,1} .\nonumber \\ \end{aligned}$$
(97)

Appendix B: General scheme-invariant structure

In this appendix, the general scheme-invariant structure of a two-point correlation function in the C-scheme will be provided, which for example has to be obeyed by the polynomial contribution in Eq. (69). Denoting the structure by \(P({\hat{a}}_Q)\), it takes the general form

$$\begin{aligned} P({\hat{a}}_Q) \,=\, [{\hat{a}}_Q]^\delta \,\biggl \{\, 1 + \sum \limits _{n=1}^\infty ({\hat{a}}_Q)^n \sum \limits _{k=0}^n y_{n,k}\, {\widehat{C}}^{\,k} \,\biggr \} \,, \end{aligned}$$
(98)

where \(\widehat{C}\equiv \beta _1/2\,C\). Relations between the coefficients \(y_{n,k}\) can be obtained from the RG equation (6). Up to order \({\hat{a}}_Q^4\), and setting \(\lambda = \beta _2/\beta _1\), those relations read:

$$\begin{aligned} y_{1,1}= & {} \delta \,, \quad y_{2,2} \,=\, \frac{\delta }{2} \,(\delta +1) \,, \nonumber \\ y_{2,1}= & {} (\delta +1)\,y_{1,0} + \lambda \,\delta \,, \nonumber \\ {\qquad }y_{3,3}= & {} \frac{\delta }{6}\,(\delta +1)(\delta +2) \,, \quad y_{3,2} \,=\, \frac{1}{2}\nonumber \\&\times \big [ (\delta +1)(\delta +2)\,y_{1,0} + \lambda \,\delta \,(2\delta +3) \big ] \,, \nonumber \\ {\qquad }y_{3,1}= & {} (\delta +2)\,y_{2,0} + \lambda \,(\delta +1) \,y_{1,0} + \lambda ^2 \delta \,, \nonumber \\ y_{4,4}= & {} \frac{\delta }{24}\,(\delta +1)(\delta +2)(\delta +3) \,, \nonumber \\ {\qquad }y_{4,3}= & {} \frac{1}{6}\,\big [ (\delta +1)(\delta +2)(\delta +3)\,y_{1,0}\nonumber \\&+ \lambda \,\delta \,(3\delta ^2+12\delta +11) \big ] \,, \nonumber \\ {\qquad }y_{4,2}= & {} \frac{1}{6}\,\big [ (\delta +2)(\delta +3)\,y_{2,0} + \lambda \, (\delta +1)(2\delta +5)\nonumber \\&\times y_{1,0} + 3\lambda ^2\delta \,(\delta +2) \big ] \,, \nonumber \\ {\qquad }y_{4,1}= & {} (\delta +3)\,y_{3,0} + \lambda \,(\delta +2) \,y_{2,0} + \lambda ^2 (\delta +1)\,y_{1,0} + \lambda ^3\delta .\nonumber \\ \end{aligned}$$
(99)

If still higher orders are required, it is an easy matter to compute them from the RG equation. Like for the two-point correlators, the coefficients \(y_{n,0}\) cannot be determined from the renormalisation group, and can be considered independent.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamin, M. Higher-order behaviour of two-point current correlators. Eur. Phys. J. Spec. Top. 230, 2609–2624 (2021). https://doi.org/10.1140/epjs/s11734-021-00266-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjs/s11734-021-00266-y

Navigation