Skip to main content
Log in

Estimation of the Strength of the Lunar Soil by the Depth of the Lunar Rover Wheel Tracks

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The paper describes the results of measuring the depth of the track left by the wheels of Lunokhod-1 and -2; the depth was used to estimate the compressive strength of the upper layer of the lunar soil. The measurements were taken at 13 locations along the Lunokhod-1 path and 13 locations along the Lunokhod-2 path. The values turned out to be close: 9–49 mm (average 24 mm) for Lunokhod-1 and 12–32 mm (average 21 mm) for Lunokhod-2. It is natural to expect that the stronger the soil, the shallower the track depth, and the calculations given in the paper confirmed this. The measurement technique took into account the specifics of the wheels of the lunar rovers: they had metal mesh rims with high lugs. The range of strength values turned out to be 9.8–23.4 kPa (average 15.0 kPa) along the Lunokhod-1 path and 13.5–22.4 kPa (average 15.6 kPa) along the Lunokhod-2 path. Since the wheel rim designs of the Soviet and Chinese lunar rovers are identical, it was possible to use the developed technique for calculating the strength of the lunar soil along the path of Yutu and Yutu-2, invoking the literature data on the depth of the wheel track for Yutu (2.5–9.3 mm) and Yutu-2 (2.3–7.8 mm) and taking into account their lower mass than that of the Soviet lunar rovers. The results of estimating the strength of soil along the path of these vehicles are 10.0–19.4 kPa and 10.9–20.2 kPa, respectively. In this study we have also performed the theoretical and computational analysis of the interdependence of measurements of soil strength with a cone-blade stamp of the onboard passability assessment device (PrOP) of the Soviet lunar rovers and arbitrary lunar rover wheel stamps. A linear relationship has been established between the measurements and calculations of the strength of the lunar soil by these two methods, and the causes for the differences have been explained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.
Fig. 17.
Fig. 18.
Fig. 19.
Fig. 20.
Fig. 21.
Fig. 22.
Fig. 23.

Similar content being viewed by others

REFERENCES

  1. Aldrin, E.E., Armstrong, N.A., and Collins, M., 2. Crew observations, in Apollo 11 Preliminary Science Report. NASA SP-214, Washington, DC: Natl. Aeronaut. Space Admin., 1969, pp. 35–40.

    Google Scholar 

  2. Anisov, K.S., Mastakov, V.I., Ivanov, O.G., et al., Design and operation of the Luna-17 station and Lunokhod-1, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (Lunokhod-1, Mobile Laboratory on the Moon), Vinogradov, A.P., Ed., Moscow: Nauka, 1971, pp. 7–20.

  3. Artemis Plan. NASA’s Lunar Exploration Program Overview. NP-2020-05-2853-HQ, Washington, DC: Natl. Aeronaut. Space Admin., 2020.

  4. Basilevsky, A.T., Grebennik, N.N., Gromov, V.V., Dmitriev, A.D., Kemurdzhian, A.L., Polosukhin, V.P., Semenov, P.S., and Florenskii, K.P., Dependence of the physical and mechanical properties of the lunar soil on the features of the relief and processes at the operation site of Lunokhod-2, Kosmich. Issled., 1984, vol. 22, no. 2, pp. 243–251.

    ADS  Google Scholar 

  5. Carrier, W.D., Olhoeft, G.R., and Mendell, W., Physical properties of the lunar surface, in Lunar Sourcebook, Heiken, G., Vaniman, D., and French, B.M., Eds., Cambridge: Cambridge Univ. Press, 1991, pp. 475–594.

    Google Scholar 

  6. Carrier, W.D., The Four Things You Need to Know about the Geotechnical Properties of Lunar Soil, Lakeland, FL: Lunar Geotechnical Inst., 2005.

    Google Scholar 

  7. Clegg, R.N., Jolliff, B.L., Robinson, M.S., Hapke, B.W., and Plescia, J.B., Effects of rocket exhaust on lunar soil reflectance properties, Icarus, 2014, vol. 227, pp. 176–194. https://doi.org/10.1016/j.icarus.2013.09.013

    Article  ADS  Google Scholar 

  8. Colwell, J.E., Batiste, S., Horanyi, M., Robertson, S., and Sture, S., Lunar surface: Dust dynamics and regolith mechanics, Rev. Geophys., 2007, vol. 45, no. 2, art. id. RG2006. https://doi.org/10.1029/2005RG000184

  9. Costes, N.C., Cohron, G.T., and Moss, D.C., Penetration resistance test—an approach to evaluating in-place strength and packing characteristics of lunar soils, Proc. Second Lunar Sci. Conf., Cambridge, MA: MIT Press, 1971, pp. 1973–1987.

  10. Florenskii, K.P., Basilevsky, A.T., and Nikolaeva, A.V., Lunnyi grunt: svoistva i analogi. Model’ 1974 (Lunar Soil: Properties and Analogues. Model 1974), Moscow: Inst. Geokhim. Anal. Khim. im. Vernadskogo, 1975.

  11. Gromov, V.V., Zabavnikov, N.A., Kemurdzhian, A.L., et al., Peredvizhenie po gruntam Luny i planet (Movement on the Soil of the Moon and Planets), Kemurdzhian, A.L., Ed., Moscow: Mashinostroenie, 1986.

    Google Scholar 

  12. Karachevtseva, I.P., Konopikhin, A.A., Shingareva, K.B., Cherepanova, E.V., Gusakova, E.N., and Baskakova, M.A., Atlas of Lunokhod-1: Geoinformation mapping and analysis of the landing region of the automatic interplanetary station Luna-17 from the remote sensing data of the Lunar Reconnaissance Obiter, in Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosmosa, 2012, vol. 9, no. 4, pp. 292–303.

  13. Karachevtseva, I.P., Kozlova, N.A., Kokhanov, A.A., et al., Cartography of the Luna-21 landing site and Lunokhod-2 traverse area based on Lunar Reconnaissance Orbiter camera images and surface archive TV-panoramas, Icarus, 2017, vol. 283, pp. 104–121.

    Article  ADS  Google Scholar 

  14. Kaydash, V.G. and Shkuratov, Yu.G., Structural disturbances of the lunar surface near the Lunokhod-1 spacecraft landing site, Sol. Syst. Res., 2014, vol. 48, no. 3, pp. 187–175.

    Article  ADS  Google Scholar 

  15. Kaydash, V., Shkuratov, Y., Korokhin, V., and Videen, G., Photometric anomalies in the Apollo landing sites as seen from the Lunar Reconnaissance Orbiter, Icarus, 2011, vol. 211, no. 1, pp. 89–96. https://doi.org/10.1016/j.icarus.2010.08.024

    Article  ADS  Google Scholar 

  16. Kreslavsky, M.A. and Shkuratov, Yu.G., Photometric anomalies of the lunar surface: Results from Clementine data, J. Geophys. Res., 2003, vol. 108, no. E3. https://doi.org/10.1029/2002je001937

  17. Leonovich, A.K., Gromov, V.V., Rybakov, A.V., Petrov, V.K., Pavlov, P.S., Cherkasov, I.I., and Shvarev, V.V., Studies of the mechanical properties of the lunar soil on the self-propelled vehicle Lunokhod-1, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (Lunokhod-1, Mobile Laboratory on the Moon), Vinogradov, A.P., Ed., Moscow: Nauka, 1971, pp. 78–88.

  18. Leonovich, A. K., Ivanov, O.G., Pavlov, P.S., et al., 1. Self-propelled chassis of Lunokhod-1 as a tool for studying the lunar surface, in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (Lunokhod-1, Mobile Laboratory on the Moon), Barsukov, V.L., Ed., Moscow: Nauka, 1978, vol. 2, pp. 25–43.

  19. Li, J.-Q., Huang, H., Dang. Z.-L., Zou. M., and Wang. Y., Sinkage of wire mesh wheel under light load, J. Jilin Univ. (Eng. Technol. Ed.), 2015, vol. 45, no. 1, pp. 167–173.

  20. Litvak, M.L., Mitrofanov, I.G., and Tretyakov, V.I., The nearest perspectives for Lunokhod 2.0, in 10th Moscow Solar System Symp. Space Research Institute, 2019, abs. 10MS3-MN-18.

  21. Litvak, M.L., Golovin, D.V., Dyachckova, M.V., Kalashnikov, D.V., Kozyrev, A.S., Mitrofanov, I.G., Mokrkusov, M.I., Sanin, A.B., and Tretyakov, V.I., Gamma and neutron spectrometers designed for installation onboard the lunar rover, Sol. Syst. Res., 2020, vol. 54, no. 4, pp. 275–287.

    Article  ADS  Google Scholar 

  22. Malenkov, M., Self-propelled automatic chassis of Lunokhod-1: History of creation in episodes, Front. Mech. Eng., 2016, vol. 11, no. 1, pp. 60–86.

    Article  Google Scholar 

  23. Malenkov, M., I., Creel, R.A., Dovgan, V.G., Scott, D.R., Basilevsky, A.T., and Head, J.W., They are ahead of time: The influence of the Soviet and American lunar rovers on modern planetary research, 10th Moscow Solar System Symp. Space Research Institute, 2019, vol. 2, pp. 90–93.

  24. Mitchell, J.K., Bromwell, L.G., Carrier, W.D., Costes, N.C., Houston, W.N., and Scott, R.F., Soil mechanics experiment, Apollo-15 Preliminary Science Report, SP-289, 7–1 to 7–28, Washington, DC: Natl. Aeronaut. Space Admin., 1972.

    Google Scholar 

  25. Selivanov, A.S., Govorov, V.M., Zasetskii, V.V., and Timokhin, V.A., Features of construction and basic parameters of the television systems of Lunokhod-1 in Peredvizhnaya laboratoriya na Lune Lunokhod-1 (Lunokhod-1, Mobile Laboratory on the Moon), Vinogradov, A.P., Ed., Moscow: Nauka, 1971, pp. 55–65.

    Google Scholar 

  26. Tang, Zh., Liu, J., Wang, X., et al., Physical and mechanical characteristics of lunar soil at the Chang’e-4 landing site, Geophys. Rev. Lett., 2020, vol. 47, no. 22. art. id. e2020GL089499. https://doi.org/10.1029/2020GL089499

  27. Wan, W.X., Wang, C., Li, C.L., and Wei, Y., China’s first mission to Mars, China’s Nat. Astron., 2020, vol. 4, pp. 721–722.

    Article  Google Scholar 

  28. Witze, A., NASA has launched the most ambitious Mars rover ever built: Here’s what happens next, Nature, 2020, vol. 584, pp. 15–16.

    Article  ADS  Google Scholar 

  29. Zelenyi, L.M., Russian space science program update, in 57th European Space Sciences Committee Plenary Meeting, Amsterdam, May 9–10, 2019.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Basilevsky.

Additional information

Translated by M. Chubarova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basilevsky, A.T., Malenkov, M.I., Volov, V.A. et al. Estimation of the Strength of the Lunar Soil by the Depth of the Lunar Rover Wheel Tracks. Sol Syst Res 55, 285–308 (2021). https://doi.org/10.1134/S0038094621040018

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094621040018

Keywords:

Navigation