Skip to main content
Log in

Effect of Diameter, Length, and Chirality on the Properties of Silicon Nanotubes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The mechanical properties of nanostructures are a researcher’s favorite topics. In the meantime, the mechanical and physical properties of the two dimensional structures and the nanotubes have attracted greater attention due to their wide application. Si (Si) nanotubes are structures consisting of Si atoms that are arranged as honeycombs. This structure has created some special properties in Si nanotubes. In this paper, Young’s modulus values and stress strain diagrams of Si nanotubes are investigated using molecular dynamics method and the Tersoff potential. Then, the changes effect of size and dimension was investigated for a closer look. For this purpose, the effect of nanotube diameter, length, and chirality shift from zigzag to armchair were studied. The results showed that the fracture stress of nanotube decreased with increasing the length of Si nanotube. It was also shown that the armchair structure was stronger than the zigzag. The effect of diameter change on the mechanical properties was also investigated and it was observed that no specific order could be found between the diameter changes with the Si nanotube strength. The results were in good agreement with other studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available but are available from the corresponding author on reasonable request

References

  1. Huang Y, Chattopadhyay S, Jen Y, Peng Y, Liu T, Hsu Y, Pan C, Lo H, Hsu C, Chang Y, Lee C, Chen K, Chen L (2007) Improved broadband and quasiomnidirectional anti-reflection properties with biomimetic silicon nanostructures. Nature Nanotech 2:770–774

    Article  CAS  Google Scholar 

  2. Lee LP, Szema R (2005) Inspirations from biological optics for advanced photonic systems. Science. 310:1148–1150

    Article  CAS  PubMed  Google Scholar 

  3. Vukusic P, Sambles JR (2003) Photonic structures in biology. Nature. 424:852–855

    Article  CAS  PubMed  Google Scholar 

  4. Parker AR, Townley HE (2007) Biomimetics of photonic nanostructures. Nature Nanotech. 2:347–353

    Article  CAS  Google Scholar 

  5. Potyrailo R, Ghiradella H, Vertiatchikh A, Dovidenko K, Cournoyer J, Olson E (2007) Morpho butterfly wing scales demonstrate highly selective vapour response. Nature Photon 1:123–128

    Article  CAS  Google Scholar 

  6. Neinhuis C, Barthlott W (1997) Characterisation and distribution of water-repellent, self-cleaning plant surfaces. Ann Bot 79:667–677

    Article  Google Scholar 

  7. Ghiradella H, Aneshansley D, Eisner T, Silberglied RE, Hinton HE (1972) Ultraviolet reflection of a male butterfly: interference color caused by thin-layer elaboration of wing scales. Science. 178:1214–1217

    Article  CAS  PubMed  Google Scholar 

  8. Aizenberg J, Tkachenko A, Weiner S, Addadi L, Hendler G (2001) Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature. 412:819–822

    Article  CAS  PubMed  Google Scholar 

  9. Bernhard CG (1967) Structural and functional adaptation in a visual system. Endeavour. 26(98):79–84

    Google Scholar 

  10. Singh A, Chaudhury S, Chanda M, Sarkar CK (2020) Split gated silicon nanotube FET for bio-sensing applications. IET Circuits, Devices & Systems 14(8):1289–1294

    Article  Google Scholar 

  11. Hibst N, Steinbach AM, Strehle S (2016) Fluidic and electronic transport in silicon nanotube biosensors. MRS Advances 1(56):3761–3766

    Article  CAS  Google Scholar 

  12. Mu C, Zhao Q, Xu D, Zhuang Q, Shao Y (2007) Silicon nanotube array/gold electrode for direct electrochemistry of cytochrome c. J Phys Chem B 111(6):1491–1495

    Article  CAS  PubMed  Google Scholar 

  13. Camilli L, Passacantando M (2018) Advances on sensors based on carbon nanotubes. Chemosensors. 6(4):62

    Article  CAS  Google Scholar 

  14. Kunjie L, Wang W, Cao D (2011) Novel chemical sensor for CO and NO: silicon nanotube. J Phys Chem C 115(24):12015–12022

    Article  Google Scholar 

  15. Ji X, Wang H, Song B, Chu B, He Y (2018) Silicon nanomaterials for biosensing and bioimaging analysis. Frontiers in chemistry 6:38

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wen, Z., Lu, G., Mao, S., Kim, H., Cui, S., Yu, K., ... & Chen, J. "Silicon nanotube anode for lithium-ion batteries", Electrochem Commun, 29, 67–70 (2013)

  17. Park M, Kim M, Joo J, Kim K, Kim J, Ahn S, Cui Y, Cho J (2009) Silicon nanotube battery anodes. Nano Lett 9(11):3844–3847

    Article  CAS  PubMed  Google Scholar 

  18. Tesfaye AT, Gonzalez R, Coffer JL, Djenizian T (2015) Porous silicon nanotube arrays as anode material for Li-ion batteries. ACS Appl Mater Interfaces 7(37):20495–20498

    Article  CAS  PubMed  Google Scholar 

  19. Wu H, Chan G, Choi J, Ryu I, Yao Y, McDowell MT, Lee S, Jackson A, Yang Y, Hu L, Cui Y (2012) Stable cycling of double-walled silicon nanotube battery anodes through solid electrolyte interphase control. Nature Nanotech. 7:310–315

    Article  CAS  Google Scholar 

  20. Jia Y, Cao A, Bai X, Li Z, Zhang L, Guo N, Wei J, Wang K, Zhu H, Wu D, Ajayan PM (2011) Achieving high efficiency silicon - carbon nanotube heterojunction solar cells by acid doping. Nano Lett 11(5):1901–1905

    Article  CAS  PubMed  Google Scholar 

  21. Jeong H, Song H, Pak Y, Kwon IK, Jo K, Lee H, Jung GY (2014) Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv Mater 26(21):3445–3450

    Article  CAS  PubMed  Google Scholar 

  22. Ambika R, Srinivasan R (2016) Performance analysis of n-type junctionless silicon nanotube field effect transistor. J Nanoelectron Optoelectron 11(3):290–296

    Article  CAS  Google Scholar 

  23. Fahad HM, Hussain MM (2013) High-performance silicon nanotube tunneling FET for ultralow-power logic applications. IEEE Trans Electron Devices 60(3):1034–1039

    Article  CAS  Google Scholar 

  24. Tekleab D (2014) Device performance of silicon nanotube field effect transistor. IEEE Electron Device lett 35(5):506–508

    Article  CAS  Google Scholar 

  25. Fahad HM, Smith CE, Rojas JP, Hussain MM (2011) Silicon nanotube field effect transistor with core–shell gate stacks for enhanced high-performance operation and area scaling benefits. Nano Lett 11(10):4393–4399

    Article  CAS  PubMed  Google Scholar 

  26. Chen JF, Ding HM, Wang JX, Shao L (2004) Preparation and characterization of porous hollow silica nanoparticles for drug delivery application. Biomaterials. 25(4):723–727

    Article  PubMed  Google Scholar 

  27. Chen Y, Aslanoglou S, Murayama T, Gervinskas G, Fitzgerald LI, Sriram S, Tian J, Johnston AP, Morikawa Y, Suu K, Elnathan R (2020) Silicon-nanotube-mediated intracellular delivery enables ex vivo gene editing, Adv Mat 32(24):2000036

  28. Yoo J, Kim J, Jung YS, Kang K (2012) Scalable fabrication of silicon nanotubes and their application to energy storage. Adv Mater 24(40):5452–5456

    Article  CAS  PubMed  Google Scholar 

  29. Chen X, Li H, Yan Z, Cheng F, Chen J (2019) Structure design and mechanism analysis of silicon anode for lithium-ion batteries. Sci China Mat 62(11):1515–1536

    Article  CAS  Google Scholar 

  30. Sun Y, Liu N, Cui Y (2016) Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat Energy 1(7):16071

    Article  CAS  Google Scholar 

  31. Yang Y, McDowell MT, Jackson A, Cha JJ, Hong SS, Cui Y (2010) New nanostructured Li2S/silicon rechargeable battery with high specific energy. Nano Lett 10(4):1486–1491

    Article  CAS  PubMed  Google Scholar 

  32. LIU DL, LIU MX, Hu T, Wang XW, Su JT (2010) Advances in research on silicon nanotubes drug delivery systems. Progress in Pharmaceutical Sciences, p 10

  33. Lan, J. Cheng, D. Cao,D. Wang, W. “Silicon nanotube as a promising candidate for hydrogen storage: from the first principle calculations to grand canonical Monte Carlo simulations”, J Phys Chem C, 112(14), pp. 5598–5604 (2008)

  34. Pop E, Sinha S, Goodson KE (2006) Heat generation and transport in nanometer-scale transistors. Proceed IEEE 94(8):1587–1601

    Article  CAS  Google Scholar 

  35. Li D, Wu Y, Kim P, Shi L, Young’s P (2003) Thermal conductivity of individual silicon nanowires. Appl Phys Lett 83(14):2934–2936

    Article  CAS  Google Scholar 

  36. Chen J, Zhang G, Li B (2010) Remarkable reduction of thermal conductivity in silicon nanotubes. Nano Lett 10(10):3978–3983

    Article  CAS  PubMed  Google Scholar 

  37. Szczech JR, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  CAS  Google Scholar 

  38. Esfahani M, Alaca BE, Jabbari M (2019) Mechanical Properties of Honeycomb Nanoporous Silicon: A High Strength and Ductile Structure. Nanotechnology30(45)

  39. Chan, C.K. Peng, H.L. Liu, G. McIlwrath, K. Zhang, C.F. Huggins, R.F. Cui,Y. “High-performance lithium battery anodes using silicon nanowires”, Nat Nanotechnol, 3(1), pp. 31–35 (2008)

  40. Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon JM (2001) Searching for new anode materials for the Li-ion technology: time to deviate from the usual path. J Power Sources 97–8:235–239

    Article  Google Scholar 

  41. Kasavajjula U, Wang CS, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163:1003–1039

    Article  CAS  Google Scholar 

  42. Bai J, Zeng XC, Tanaka H, Zeng JY (2004) Metallic single-walled silicon nanotubes. Nat Acad Sci 101(9):2664–2668

    Article  CAS  Google Scholar 

  43. Fagan SB, Mota R, Baierle RJ, Paiva G, da Silva AJJ, Fazzio J (2001) Stability investigation and thermal behavior of a hypothetical silicon nanotube. J Mol Struct Theochem 539:101–106

    Article  CAS  Google Scholar 

  44. Palaria A, Klimeck G, Strachan A (2008) Structures and energetics of silicon nanotubes from molecular dynamics and density functional theory. Phys. Rev. B. 78(20):205315

    Article  Google Scholar 

  45. Ranjbartoreh, Ali Reza, and Guoxiu Wang. Molecular dynamic investigation of mechanical properties of armchair and zigzag double-walled carbon nanotubes under various loading conditions Physics Letters A 374, no. 7 (2010): 969–974

  46. San Paulo A, Bokor J, Howe RT, He R, Young’s P, Gao D, Carraro C, Maboudian R (2005) Mechanical elasticity of single and double clamped silicon nanobeams fabricated by the vapor-liquid-solid method. Appl Phys Lett 87(5):053111

    Article  Google Scholar 

  47. Genoese A, Genoese A, Salerno G (2019) On the nanoscale behaviour of single-wall C, BN and SiC nanotubes. Acta Mech 230:1105–1128

    Article  Google Scholar 

  48. Rapaport, D. “The art of molecular dynamics simulation”, Cambridge University press 1995, UK (2004)

  49. Tersoff J (1986) New empirical model for the structural properties of silicon. Phys Rev Lett 56:632–635

    Article  CAS  PubMed  Google Scholar 

  50. Verma V, Dharamvir K, Jindal VK (2008) Structure and Elastic Modulii of Silicon Nanotubes. J Nano Res 2:85–90

    Article  CAS  Google Scholar 

  51. Kang JW, Seo JJ, Hwang HJ (2002) Molecular Dynamics Study of Hypothetical Silicon Nanotubes Using the Tersoff Potential. J Nanosci Nanotechnol 2:687–691

    Article  CAS  PubMed  Google Scholar 

  52. Jeong Won Kang, Jae Jeong Seo, Ho Jung Hwang. “A Study on Silicon Nanotubes based on the Tersoff potential” (2002)

  53. Lv P, Feng Y-y, Zhang P, Chen H-m, Zhao N, Feng W (2011) Increasing the interfacial strength in carbon fiber/epoxy composites by controlling the orientation and length of carbon nanotubes grown on the fibers. Carbon. 49(14):4665–4673

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Code Availability

The LAMMPS package is free and open-source software.

Funding

This research was financially supported by a research grant from the University of Shahreza.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Mohsen Motamedi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable

Consent for Publication

Not applicable

Competing Interests

The authors declare that they have no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motamedi, M., Safdari, E. Effect of Diameter, Length, and Chirality on the Properties of Silicon Nanotubes. Silicon 14, 5527–5534 (2022). https://doi.org/10.1007/s12633-021-01332-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01332-9

Keywords

Navigation