Skip to main content
Log in

Oxygen Metabolism-induced Stress Response Underlies Heart–brain Interaction Governing Human Consciousness-breaking and Attention

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neuroscientists have emphasized visceral influences on consciousness and attention, but the potential neurophysiological pathways remain under exploration. Here, we found two neurophysiological pathways of heart-brain interaction based on the relationship between oxygen-transport by red blood cells (RBCs) and consciousness/attention. To this end, we collected a dataset based on the routine physical examination, the breaking continuous flash suppression (b-CFS) paradigm, and an attention network test (ANT) in 140 immigrants under the hypoxic Tibetan environment. We combined electroencephalography and multilevel mediation analysis to investigate the relationship between RBC properties and consciousness/attention. The results showed that RBC function, via two independent neurophysiological pathways, not only triggered interoceptive re-representations in the insula and awareness connected to orienting attention but also induced an immune response corresponding to consciousness and executive control. Importantly, consciousness played a fundamental role in executive function which might be associated with the level of perceived stress. These results indicated the important role of oxygen-transport in heart-brain interactions, in which the related stress response affected consciousness and executive control. The findings provide new insights into the neurophysiological schema of heart-brain interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Critchley HD, Harrison NA. Visceral influences on brain and behavior. Neuron 2013, 77: 624–638.

    Article  CAS  PubMed  Google Scholar 

  2. Rebollo I, Devauchelle AD, Béranger B, Tallon-Baudry C. Stomach-brain synchrony reveals a novel, delayed-connectivity resting-state network in humans. Elife 2018, 7: e33321.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Azzalini D, Rebollo I, Tallon-Baudry C. Visceral signals shape brain dynamics and cognition. Trends Cogn Sci 2019, 23: 488–509.

    Article  PubMed  Google Scholar 

  4. Chang C, Metzger CD, Glover GH, Duyn JH, Heinze HJ, Walter M. Association between heart rate variability and fluctuations in resting-state functional connectivity. Neuroimage 2013, 68: 93–104.

    Article  PubMed  Google Scholar 

  5. Jiang HT, He B, Guo XL, Wang X, Guo ML, Wang Z. Brain–heart interactions underlying traditional Tibetan Buddhist meditation. Cereb Cortex 2020, 30: 439–450.

    PubMed  Google Scholar 

  6. Park HD, Correia S, Ducorps A, Tallon-Baudry C. Spontaneous fluctuations in neural responses to heartbeats predict visual detection. Nat Neurosci 2014, 17: 612–618.

    Article  CAS  PubMed  Google Scholar 

  7. Al E, Iliopoulos F, Forschack N, Nierhaus T, Grund M, Motyka P, et al. Heart–brain interactions shape somatosensory perception and evoked potentials. Proc Natl Acad Sci U S A 2020, 117: 10575–10584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brownley KA, Hurwitz BE, Schneiderman N. Cardiovascular psychophysiology, Cambridge University Press, Cambridge, 2000, pp 224–264.

    Google Scholar 

  9. Berntson GG, Quigley KS, Lozano D. Cardiovascular psychophysiology. In: Cacioppo JT et al. (eds). Handbook of Psychophysiology, 3rd ed. Cambridge University Press, Cambridge, 2007, pp 182–210.

    Chapter  Google Scholar 

  10. Park HD, Bernasconi F, Salomon R, Tallon-Baudry C, Spinelli L, Seeck M, et al. Neural sources and underlying mechanisms of neural responses to heartbeats, and their role in bodily self-consciousness: An intracranial EEG study. Cereb Cortex 2018, 28: 2351–2364.

    Article  PubMed  Google Scholar 

  11. Babo-Rebelo M, Richter CG, Tallon-Baudry C. Neural responses to heartbeats in the default network encode the self in spontaneous thoughts. J Neurosci 2016, 36: 7829–7840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Babo-Rebelo M, Buot A, Tallon-Baudry C. Neural responses to heartbeats distinguish self from other during imagination. Neuroimage 2019, 191: 10–20.

    Article  PubMed  Google Scholar 

  13. Bianconi E, Piovesan A, Facchin F, Beraudi A, Casadei R, Frabetti F, et al. An estimation of the number of cells in the human body. Ann Hum Biol 2013, 40: 463–471.

    Article  PubMed  Google Scholar 

  14. Olaussen A, Shepherd M, Nehme Z, Smith K, Bernard S, Mitra B. Return of consciousness during ongoing cardiopulmonary resuscitation: A systematic review. Resuscitation 2015, 86: 44–48.

    Article  PubMed  Google Scholar 

  15. Nakabayashi M, Kurokawa A, Yamamoto Y. Immediate prediction of recovery of consciousness after cardiac arrest. Intensive Care Med 2001, 27: 1210–1214.

    Article  CAS  PubMed  Google Scholar 

  16. Anderson HL, Brodsky IE, Mangalmurti NS. The evolving erythrocyte: Red blood cells as modulators of innate immunity. J Immunol 2018, 201: 1343–1351.

    Article  CAS  PubMed  Google Scholar 

  17. Baum J, Ward RH, Conway DJ. Natural selection on the erythrocyte surface. Mol Biol Evol 2002, 19: 223–229.

    Article  CAS  PubMed  Google Scholar 

  18. Minasyan H. Mechanisms and pathways for the clearance of bacteria from blood circulation in health and disease. Pathophysiology 2016, 23: 61–66.

    Article  PubMed  Google Scholar 

  19. Minasyan H. Phagocytosis and oxycytosis: Two arms of human innate immunity. Immunol Res 2018, 66: 271–280.

    Article  CAS  PubMed  Google Scholar 

  20. Ukidve A, Zhao ZM, Fehnel A, Krishnan V, Pan DC, Gao YS, et al. Erythrocyte-driven immunization via biomimicry of their natural antigen-presenting function. Proc Natl Acad Sci U S A 2020, 117: 17727–17736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Robinson MW, Harmon C, O’Farrelly C. Liver immunology and its role in inflammation and homeostasis. Cell Mol Immunol 2016, 13: 267–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kim J, Yoon S, Lee S, Hong H, Ha E, Joo Y, et al. A double-hit of stress and low-grade inflammation on functional brain network mediates posttraumatic stress symptoms. Nat Commun 1898, 2020: 11.

    Google Scholar 

  23. Haroon E, Raison CL, Miller AH. Psychoneuroimmunology meets neuropsychopharmacology: Translational implications of the impact of inflammation on behavior. Neuropsychopharmacology 2012, 37: 137–162.

    Article  CAS  PubMed  Google Scholar 

  24. Irwin MR, Cole SW. Reciprocal regulation of the neural and innate immune systems. Nat Rev Immunol 2011, 11: 625–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Padgett DA, Glaser R. How stress influences the immune response. Trends Immunol 2003, 24: 444–448.

    Article  CAS  PubMed  Google Scholar 

  26. Molina-Rodriguez S, Pellicer-Porcar O, Mirete-Fructuoso M. Perceived stress and subjective memory complaints in young adults: The mediating role of the executive functions. Rev Neurol 2018, 67: 84–90.

    CAS  PubMed  Google Scholar 

  27. Ursache A, Noble KG, Blair C. Socioeconomic status, subjective social status, and perceived stress: Associations with stress physiology and executive functioning. Behav Med 2015, 41: 145–154.

    Article  PubMed  Google Scholar 

  28. Liu Q, Liu Y, Leng X, Han J, Xia F, Chen H. Impact of chronic stress on attention control: Evidence from behavioral and event-related potential analyses. Neurosci Bull 2020, 36: 1395–1410.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD. Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 2009, 66: 407–414.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bilbo SD, Schwarz JM. The immune system and developmental programming of brain and behavior. Front Neuroendocrinol 2012, 33: 267–286.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Finotti G, Migliorati D, Costantini M. Multisensory Integration, Bodily Self-Consciousness and disorders of the immune system. Brain Behav Immun 2015, 49: e31.

    Article  Google Scholar 

  32. Kanefsky R, Motamedi V, Mithani S, Mysliwiec V, Gill JM, Pattinson CL. Mild traumatic brain injuries with loss of consciousness are associated with increased inflammation and pain in military personnel. Psychiatry Res 2019, 279: 34–39.

    Article  PubMed  Google Scholar 

  33. Instanes JT, Halmøy A, Engeland A, Haavik J, Furu K, Klungsøyr K. Attention-deficit/hyperactivity disorder in offspring of mothers with inflammatory and immune system diseases. Biol Psychiatry 2017, 81: 452–459.

    Article  PubMed  Google Scholar 

  34. Zhou RY, Wang JJ, Sun JC, You Y, Ying JN, Han XM. Attention deficit hyperactivity disorder may be a highly inflammation and immune-associated disease (review). Mol Med Rep 2017, 16: 5071–5077.

    Article  CAS  PubMed  Google Scholar 

  35. O’Regan JK, Noë A. A sensorimotor account of vision and visual consciousness. Behav Brain Sci 2001, 24: 939–973 (discussion 973–1031).

    Article  CAS  PubMed  Google Scholar 

  36. Posner MI. Attention: the mechanisms of consciousness. Proc Natl Acad Sci U S A 1994, 91: 7398–7403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cohen MA, Cavanagh P, Chun MM, Nakayama K. The attentional requirements of consciousness. Trends Cogn Sci 2012, 16: 411–417.

    Article  PubMed  Google Scholar 

  38. Mack A, Rock I (1998) Inattentional blindness, MIT Press, Cambridge, pp 53–78.

    Google Scholar 

  39. Jensen MS, Yao R, Street WN, Simons DJ. Change blindness and inattentional blindness. Wiley Interdiscip Rev Cogn Sci 2011, 2: 529–546.

    Article  PubMed  Google Scholar 

  40. Lamme VA. Why visual attention and awareness are different. Trends Cogn Sci 2003, 7: 12–18.

    Article  PubMed  Google Scholar 

  41. Koch C, Tsuchiya N. Attention and consciousness: Two distinct brain processes. Trends Cogn Sci 2007, 11: 16–22.

    Article  PubMed  Google Scholar 

  42. Jiang Y, Costello P, Fang F, Huang M, He S. A gender- and sexual orientation-dependent spatial attentional effect of invisible images. Proc Natl Acad Sci U S A 2006, 103: 17048–17052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Naccache L, Blandin E, Dehaene S. Unconscious masked priming depends on temporal attention. Psychol Sci 2002, 13: 416–424.

    Article  PubMed  Google Scholar 

  44. Li FF, VanRullen R, Koch C, Perona P. Rapid natural scene categorization in the near absence of attention. Proc Natl Acad Sci U S A 2002, 99: 9596–9601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Posner MI, Petersen SE. The attention system of the human brain. Annu Rev Neurosci 1990, 13: 25–42.

    Article  CAS  PubMed  Google Scholar 

  46. Derogatis LR, Lipman RS, Covi L. SCL-90: An outpatient psychiatric rating scale——preliminary report. Psychopharmacol Bull 1973, 9: 13–28.

    CAS  PubMed  Google Scholar 

  47. Fan J, McCandliss BD, Sommer T, Raz A, Posner MI. Testing the efficiency and independence of attentional networks. J Cogn Neurosci 2002, 14: 340–347.

    Article  PubMed  Google Scholar 

  48. Eriksen BA, Eriksen CW. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept Psychophys 1974, 16: 143–149.

    Article  Google Scholar 

  49. Delorme A, Makeig S. EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134: 9–21.

    Article  PubMed  Google Scholar 

  50. Kappenman ES, Luck SJ. The Oxford handbook of event-related potential components, Oxford University Press, Oxford, 2011, pp 89–119.

    Book  Google Scholar 

  51. Freunberger R, Höller Y, Griesmayr B, Gruber W, Sauseng P, Klimesch W. Functional similarities between the P1 component and alpha oscillations. Eur J Neurosci 2008, 27: 2330–2340.

    Article  PubMed  Google Scholar 

  52. Vogel EK, Luck SJ. The visual N1 component as an index of a discrimination process. Psychophysiology 2000, 37: 190–203.

    Article  CAS  PubMed  Google Scholar 

  53. Groom MJ, Cragg L. Differential modulation of the N2 and P3 event-related potentials by response conflict and inhibition. Brain Cogn 2015, 97: 1–9.

    Article  PubMed  Google Scholar 

  54. Kok A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38: 557–577.

    Article  CAS  PubMed  Google Scholar 

  55. Oostenveld R, Fries P, Maris E, Schoffelen JM. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011, 2011: 156869.

    Article  PubMed  Google Scholar 

  56. Gross J, Kujala J, Hamalainen M, Timmermann L, Schnitzler A, Salmelin R. Dynamic imaging of coherent sources: Studying neural interactions in the human brain. Proc Natl Acad Sci U S A 2001, 98: 694–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS. A standardized boundary element method volume conductor model. Clin Neurophysiol 2002, 113: 702–712.

    Article  PubMed  Google Scholar 

  58. Taylor AB, MacKinnon DP, Tein JY. Tests of the three-path mediated effect. Organ Res Methods 2008, 11: 241–269.

    Article  Google Scholar 

  59. Hayes AF. PROCESS: A versatile computational tool for observed variable mediation, moderation, and conditional process modeling. 2012: [White paper]. Available at: http://www.afhayes.com/public/process2012.pdf.

  60. Kline RB. Principles and practice of structural equation modeling, 4th edn. Guilford publications, New York, 2015, pp 262–297.

    Google Scholar 

  61. Cannon WB. The James-Lange theory of emotions: A critical examination and an alternative theory. By Walter B. Cannon, 1927. Am J Psychol 1987, 100: 567–586.

    Article  CAS  PubMed  Google Scholar 

  62. Schachter S, Singer JE. Cognitive, social, and physiological determinants of emotional state. Psychol Rev 1962, 69: 379–399.

    Article  CAS  PubMed  Google Scholar 

  63. Lange CG. The mechanism of the emotions. The classical psychologists 1885: 672–684.

  64. Craig AD. How do You feel? Interoception: The sense of the physiological condition of the body. Nat Rev Neurosci 2002, 3: 655–666.

    Article  CAS  PubMed  Google Scholar 

  65. Craig AD. How do You feel——now? The anterior insula and human awareness. Nat Rev Neurosci 2009, 10: 59–70.

    Article  CAS  PubMed  Google Scholar 

  66. Uddin LQ. Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 2015, 16: 55–61.

    Article  CAS  PubMed  Google Scholar 

  67. Menon V, Uddin LQ. Saliency, switching, attention and control: A network model of insula function. Brain Struct Funct 2010, 214: 655–667.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Han JR, Wu XH, Wu H, Wang D, She X, Xie MS, et al. Eye-opening alters the interaction between the salience network and the default-mode network. Neurosci Bull 2020, 36: 1547–1551.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weissman DH, Roberts KC, Visscher KM, Woldorff MG. The neural bases of momentary lapses in attention. Nat Neurosci 2006, 9: 971–978.

    Article  CAS  PubMed  Google Scholar 

  70. Corbetta M, Patel G, Shulman GL. The reorienting system of the human brain: From environment to theory of mind. Neuron 2008, 58: 306–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Cechetto DF, Saper CB. Evidence for a viscerotopic sensory representation in the cortex and thalamus in the rat. J Comp Neurol 1987, 262: 27–45.

    Article  CAS  PubMed  Google Scholar 

  72. Nagai M, Hoshide S, Kario K. The insular cortex and cardiovascular system: A new insight into the brain-heart axis. J Am Soc Hypertens 2010, 4: 174–182.

    Article  PubMed  Google Scholar 

  73. Oppenheimer S, Cechetto D. The insular cortex and the regulation of cardiac function. Compr Physiol 2016, 6: 1081–1133.

    Article  PubMed  Google Scholar 

  74. James W. Discussion: The physical basis of emotion. Psychol Rev 1894, 1: 516–529.

    Article  Google Scholar 

  75. Buttari B, Profumo E, Riganò R. Crosstalk between red blood cells and the immune system and its impact on atherosclerosis. Biomed Res Int 2015, 2015: 616834.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Marks DF. I Am conscious, therefore, I am: Imagery, affect, action, and a general theory of behavior. Brain Sci 2019, 9: 107.

    Article  PubMed Central  Google Scholar 

  77. Kandel ER, Schwartz JH, Jessell TM, Jessell MBT, Siegelbaum S, et al. Principles of neural science, McGraw-Hill, New York, 2000, pp 6–17.

    Google Scholar 

  78. Damasio AR. The feeling of what happens: Body and emotion in the making of consciousness, Houghton Mifflin Harcourt, Boston, 1999, pp 323–326.

    Google Scholar 

  79. Wilson M. Six views of embodied cognition. Psychon Bull Rev 2002, 9: 625–636.

    Article  PubMed  Google Scholar 

  80. Posner MI. Attentional networks and consciousness. Front Psychol 2012, 3: 64.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Shields GS, Moons WG, Slavich GM. Better executive function under stress mitigates the effects of recent life stress exposure on health in young adults. Stress 2017, 20: 75–85.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Phillips AC. Perceived stress. Encyclopedia of Behavioral Medicine, Springer, New York, 2013, pp 1453–1454.

    Book  Google Scholar 

  83. Wang S, Zhao Y, Zhang L, Wang X, Wang X, Cheng B, et al. Stress and the brain: Perceived stress mediates the impact of the superior frontal gyrus spontaneous activity on depressive symptoms in late adolescence. Hum Brain Mapp 2019, 40: 4982–4993.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Moreno GL, Bruss J, Denburg NL. Increased perceived stress is related to decreased prefrontal cortex volumes among older adults. J Clin Exp Neuropsychol 2017, 39: 313–325.

    Article  PubMed  Google Scholar 

  85. Stillman CM, Esteban-Cornejo I, Brown B, Bender CM, Erickson KI. Effects of exercise on brain and cognition across age groups and health states. Trends Neurosci 2020, 43: 533–543.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31660274, 31771247, and 31600907), and the Reformation and Development Funds for Local Region Universities from the Chinese Government in 2020 (00060607, ZCJK 2020-11).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Lin Ma or De-Long Zhang.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, XJ., Su, R., Li, ZF. et al. Oxygen Metabolism-induced Stress Response Underlies Heart–brain Interaction Governing Human Consciousness-breaking and Attention. Neurosci. Bull. 38, 166–180 (2022). https://doi.org/10.1007/s12264-021-00761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00761-1

Keywords

Navigation