Skip to main content

Advertisement

Log in

Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy

  • Published:
Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Diabetic peripheral neuropathy (DPN) is a chronic complication of diabetes, and its neural mechanisms underlying the pathogenesis remain unclear. Autophagy plays an important role in neurodegenerative diseases and nerve tissue injury. Lipin1 is a phosphatidic acid phosphatase enzyme that converts phosphatidic acid (PA) into diacylglycerol (DAG), a precursor of triacylglycerol and phospholipids which plays an important role in maintaining normal peripheral nerve conduction function. However, whether Lipin1 involved in the pathogenesis of DPN via regulation of autophagy is not elucidated. Here, we show that the Lipin1 expression was downregulated in streptozotocin (STZ)-induced DPN rat model. Interestingly, STZ prevented DAG synthesis, and resulted in autophagic hyperactivity, effects which may increase the apoptosis of Schwann cells and lead to demyelination in sciatic nerve in DPN rats. More importantly, upregulation of lipin1 in the DPN rats ameliorated autophagy disorders and pathological changes of the sciatic nerve, which associated with the increase of the motor nerve conductive velocity (MNCV) in DPN rats. In contrast, knockdown of lipin1 exacerbates neuronal abnormalities and facilitates the genesis of DPN phenotypes in rats. In addition, overexpression of lipin1 in RSC96 cells also significantly decreased the autophagic hyperactivity and apoptosis induced by hyperglycemia. These results suggest that lipin1 may exert neuroprotection within the sciatic nerve anomalies and may serve as a potential therapeutic target for the treatment of DPN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and are available from the corresponding author upon reasonable request.

Abbreviations

7-AAD:

7-Aminoactinomycin D

ADV:

Adenovirus

ADVs:

Adenoviral vectors

BCA:

Bicinchoninic acid

CCK-8:

Cell counting kit-8

DAG:

Diacylglycerol

DAPI:

4′,6-Diamidine-2-phenylidole dihydrochloride

DM:

Diabetes mellitus

DMEM:

Dulbecco’s modified Eagle’s medium

DPN:

Diabetic peripheral neuropathy

ELISA:

Enzyme-linked immunosorbent assay

EM:

Electron microscopy

FBS:

Fetal bovine serum

FBG:

Fasting-blood-glucose

FITC:

Fluorescein isothiocyanate

LV:

Lentivirus

LVs:

Lentiviral vectors

MNCV:

Motor nerve conduction velocity

MOI:

Multiplicity of infection

NC:

Negative control

PA:

Phosphatidic acid

PAP:

Phosphatidic acid phosphatase

PBS:

Phosphate-buffered saline

PKD:

Protein kinase D

PMWT:

Paw mechanical withdrawal threshold

PVDF:

Polyvinylidene fluoride

qPCR:

Quantitative real-time polymerase chain reaction

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

STZ:

Streptozotocin

TBS-T:

Tris-buffered saline Tween

References

  1. Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R, IDF Diabetes Atlas Committee (2019) Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 157:107843

    Article  PubMed  Google Scholar 

  2. Kang C, LeRoith D, Gallagher EJ (2018) Diabetes, obesity, and breast cancer. Endocrinology 159(11):3801–3812

  3. Chatterjee S, Khunti K, Davies MJ (2017) Type 2 diabetes. Lancet 389(10085):2239–2251

    Article  CAS  PubMed  Google Scholar 

  4. Lin S, Rocha VM, Taylor R (2019) Artefactual inflation of type 2 diabetes prevalence in WHO STEP surveys. Trop Med Int Health 24(4):477–483

    Article  CAS  PubMed  Google Scholar 

  5. Tesfaye S, Selvarajah D, Gandhi R et al (2016) Diabetic peripheral neuropathy may not be as its name suggests: evidence from magnetic resonance imaging. Pain 157(Suppl 1):S72–S80

    Article  PubMed  Google Scholar 

  6. Alleman CJ, Westerhout KY, Hensen M et al (2015) Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Res Clin Pract 109(2):215–225

  7. Sloan G, Shillo P, Selvarajah D et al (2018) A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 144:177–191

  8. Tesfaye S, Boulton AJ, Dickenson AH (2013) Mechanisms and management of diabetic painful distal symmetrical polyneuropathy. Diabetes Care 36(9):2456–2465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feldman EL, Nave KA, Jensen TS, Bennett DL (2017) New Horizons in Diabetic Neuropathy: Mechanisms, Bioenergetics, and Pain. Neuron 93(6):1296–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ghavami S, Shojaei S, Yeganeh B et al (2014) Autophagy and apoptosis dysfunction in neurodegenerative disorders. Prog Neurobiol 112:24–49

    Article  CAS  PubMed  Google Scholar 

  11. Mijaljica D, Prescott M, Devenish RJ (2011) Microautophagy in mammalian cells: revisiting a 40-year-old conundrum. Autophagy 7(7):673–682

    Article  CAS  PubMed  Google Scholar 

  12. Maycotte P, Guemez-Gamboa A, Moran J (2010) Apoptosis and autophagy in rat cerebellar granule neuron death: Role of reactive oxygen species. J Neurosci Res 88(1):73–85

    Article  CAS  PubMed  Google Scholar 

  13. Wang QJ, Ding Y, Kohtz DS et al (2006) Induction of autophagy in axonal dystrophy and degeneration. J Neurosci 26(31):8057–8068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ma S, Attarwala IY, Xie X-Q (2019) SQSTM1/p62: A Potential Target for Neurodegenerative Disease. ACS Chem Neurosci 10(5):2094–2114

    Article  CAS  PubMed  Google Scholar 

  15. Tang SQ, Jiang QY, Yang CF et al (2010) Research and development of Lipin family. Yi Chuan 32(10):981–993

    Article  CAS  PubMed  Google Scholar 

  16. Mul JD, Nadra K, Jagalur NB et al (2011) A hypomorphic mutation in Lpin1 induces progressively improving neuropathy and lipodystrophy in the rat. J Biol Chem 286(30):26781–26793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pan S, Fengjie Z, Feng H et al (2020) Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway. Biochem Biophys Res Commun 525(2):286–291

    Article  PubMed  Google Scholar 

  18. Min X, Meijian W, Wei L et al (2020) Lipin1 is involved in the pathogenesis of diabetic encephalopathy through the PKD/Limk/Cofilin signaling pathway. Oxid Med Cell Longev 16(2020):1723423

    Google Scholar 

  19. Al-Rasheed NM, Al-Rasheed NM, Bassiouni YA et al (2018) Simvastatin ameliorates diabetic nephropathy by attenuating oxidative stress and apoptosis in a rat model of streptozotocin-induced type 1 diabetes. Biomed Pharmacother 105:290–298

    Article  CAS  PubMed  Google Scholar 

  20. Furman BL (2015) Streptozotocin-Induced Diabetic Models in Mice and Rats. Curr Protoc Pharmacol 70:5.47.1-5.47.20

    Article  Google Scholar 

  21. Wang Xu, Wang C, Zeng J et al (2005) Gene Transfer to Dorsal Root Ganglia by Intrathecal Injection: effects on Regeneration of Peripheral Nerves. Mol Ther 12(2):314–320

    Article  CAS  PubMed  Google Scholar 

  22. Njoo C, Heinl C, Kuner R (2014) In vivo SiRNA transfection and gene knockdown in spinal cord via rapid noninvasive lumbar intrathecal injections in mice. J Vis Exp 85:51229

    Google Scholar 

  23. Taliyan R, Sharma PL (2012) Possible mechanism of protective effect of thalidomide in STZ-induced-neuropathic pain behavior in rats. Inflammopharmacology 20(2):89–97

    Article  CAS  PubMed  Google Scholar 

  24. Kishore L, Kaur N, Singh R (2018) Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy. Inflammopharmacology 26(4):993–1003

    Article  CAS  PubMed  Google Scholar 

  25. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  26. Zhuang X, Li X, Qian G et al (2015) Changes of Lipin1β Expression in Gestational Diabetes Mellitus. Clin Lab 61(3–4):307–313

    CAS  PubMed  Google Scholar 

  27. Luo Q, Feng Y, Xie Y et al (2019) Nanoparticle-microRNA-146a-5p polyplexes ameliorate diabetic peripheral neuropathy by modulating inflammation and apoptosis. Nanomedicine 17:188–197

    Article  CAS  PubMed  Google Scholar 

  28. Cameron NE, Eaton SE, Cotter MA, Tesfaye S (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44(11):1973–1988

    Article  CAS  PubMed  Google Scholar 

  29. Tesfaye S, Harris ND, Wilson RM, Ward JD (1992) Exercise-induced conduction velocity increment: a marker of impaired peripheral nerve blood flow in diabetic neuropathy. Diabetologia 35(2):155–159

    Article  CAS  PubMed  Google Scholar 

  30. Oates PJ (2002) Polyol pathway and diabetic peripheral neuropathy. Int Rev Neurobiol 50:325–392

    Article  CAS  PubMed  Google Scholar 

  31. Wada R, Yagihashi S (2005) Role of advanced glycation end products and their receptors in development of diabetic neuropathy. Ann N Y Acad Sci 1043:598–604

    Article  CAS  PubMed  Google Scholar 

  32. Anand P, Terenghi G, Warner G et al (1996) The role of endogenous nerve growth factor in human diabetic neuropathy. Nat Med 2(6):703–707

  33. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL (2012) Diabetic neuropathy: clinical manifestations and current treatments. Lancet Neurol 11(6):521–534

    Article  PubMed  PubMed Central  Google Scholar 

  34. Stavoe AKH, Holzbaur ELF (2019) Autophagy in Neurons. Annu Rev Cell Dev Biol 6(35):477–500

    Article  Google Scholar 

  35. Scrivo A, Codogno P, Bomont P (2019) Gigaxonin E3 ligase governs ATG16L1 turnover to control autophagosome production. Nat Commun 10(1):780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Donkor J, Sariahmetoglu M, Dewald J et al (2007) Three mammalian lipins act as phosphatidate phosphatases with distinct tissue expression patterns. J Biol Chem 282:3450–3457

  37. Han GS, Wu WI, Carman GM (2006) The Saccharomyces cerevisiae Lipin homolog is a Mg2+-dependent phosphatidate phosphatase enzyme. J Biol Chem 281:9210–9218

    Article  CAS  PubMed  Google Scholar 

  38. Peixiang Zhang M, Verity A, Reue K (2014) Lipin-1 regulates autophagy clearance and intersects with statin drug effects in skeletal muscle. Cell Metab 20(2):267–279

    Article  PubMed  PubMed Central  Google Scholar 

  39. Qu L, Zhang H, Gu B et al (2016) Jinmaitong Alleviates the diabetic peripheral neuropathy by inducing autophagy. Chin J Integr Med 22(3):185–192

    Article  PubMed  Google Scholar 

  40. Liu Y, Chen X, Yao J, Kang J (2019) Circular RNA ACR relieves high glucose-aroused RSC96 cell apoptosis and autophagy via declining microRNA-145-3p. J Cell Biochem. https://doi.org/10.1002/jcb.29568

  41. Wang X, Huan Y, Li C et al (2020) Diphenyl diselenide alleviates diabetic peripheral neuropathy in rats with streptozotocin-induced diabetes by modulating oxidative stress. Biochem Pharmacol 182:114221

    Article  CAS  PubMed  Google Scholar 

  42. Muscella A, Vetrugno C, Cossa LG et al (2020) TGF-β1 activates RSC96 Schwann cells migration and invasion through MMP-2 and MMP-9 activities. J Neurochem 153(4):525–538

    Article  PubMed  Google Scholar 

  43. Clements MP, Byrne E, Camarillo Guerrero LF et al (2017) The Wound Microenvironment Reprograms Schwann Cells to Invasive Mesenchymal-like Cells to Drive Peripheral Nerve Regeneration. Neuron 96(1):98-114.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mir SU, Schwarze SR, Jin L et al (2013) Progesterone receptor membrane component 1/Sigma-2 receptor associates with MAP1LC3B and promotes autophagy. Autophagy 9(10):1566–1578

    Article  CAS  PubMed  Google Scholar 

  45. Del Bello B, Marcolongo P, Ciarmela P et al (2019) Autophagy up-regulation by ulipristal acetate as a novel target mechanism in the treatment of uterine leiomyoma: an in vitro study. Fertil Steril 112(6):1150–1159

    Article  PubMed  Google Scholar 

  46. Gomez-Sanchez JA, Carty L, Iruarrizaga-Lejarreta M et al (2015) Schwann cell autophagy, myelinophagy, initiates myelin clearance from injured nerves. J Cell Biol 210(1):153–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Towns R, Guo C, Shangguan Y et al (2008) Type 2 diabetes with neuropathy: autoantibody stimulation of autophagy via Fas. NeuroReport 19(3):265–269

    Article  CAS  PubMed  Google Scholar 

  48. Du W, Wang N, Li F et al (2019) STAT3 phosphorylation mediates high glucose-impaired cell autophagy in an HDAC1-dependent and -independent manner in Schwann cells of diabetic peripheral neuropathy. FASEB J 33(7):8008–8021

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Thanks for the guidance of the teachers from the Institute of basic medicine of Shandong University and the provision of the rat sciatic nerve conduction velocity meter. We also thank the teachers of the basic laboratory of the Second Hospital of Shandong University for their guidance in the research of apoptosis.

Funding

This study was supported by the National Natural Science Foundation of China (NNSFC) (NO.81670753 and NO. 82070847) to S.C., and NNSFC (NO.81800722) to X.Z., the grants from the Key R & D programs of Shandong Province (No.2018GSF118108) to S.C., and the Hospital Youth Foundation of Qilu Hospital of Shandong University, Qingdao (QDKY2017QN12) to M.W.

Author information

Authors and Affiliations

Authors

Contributions

S.C. conceived the study. X.Z., S.Y., L.C., and S.C. designed the study. M.W., M.X., P.S, C.Z., X.H., and C.F. performed the experiments and interpreted data analyses. M.W. wrote the first version of the paper. All authors critically reviewed, revised, and approved the final version of the manuscript.

Corresponding authors

Correspondence to Xianghua Zhuang or Shihong Chen.

Ethics declarations

Ethics Approval and Consent to Participate

This article does not contain any studies with human participants performed by any of the authors. Animal experiments were performed in accordance with the International Guiding Principles for Animal Research as stipulated by the World Health Organization were followed.

Consent for Publication

All authors agree to publish the article in this magazine and the manuscript contains no any individual person’s data in any form.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xie, M., Yu, S. et al. Lipin1 Alleviates Autophagy Disorder in Sciatic Nerve and Improves Diabetic Peripheral Neuropathy. Mol Neurobiol 58, 6049–6061 (2021). https://doi.org/10.1007/s12035-021-02540-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12035-021-02540-5

Keywords

Navigation