Skip to main content
Log in

Some Kinetic Features of Na,K-ATPase and Sensitivity to Noradrenaline

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

A comparative kinetic analysis of albino rat brain synaptic and kidney plasma membrane fraction Na,K-ATPase was performed to comprehend the different levels of sensitivity of these fractions to the neurotransmitter noradrenaline. Noradrenaline (NA) inhibits the rat brain synaptic membrane Na,K-ATPase, changes the stoichiometry of Na+ and K+ and shifts the enzyme system from an MgATP to an Mg2+ dependent cycle. While the kidney plasma membrane fraction Na,K-ATPase is not sensitive to noradrenaline. To investigate the mechanism underlying this difference, we studied enzyme velocity dependence on the concentration of Mg2+. The 1/V = f(Mg2+) function has shown different kinetic features for the synaptic and kidney plasma membrane Na,K-ATPase. With the addition of ethylene glycol tetraacetic acid (EGTA) to the reaction medium the geometric form of 1/V = f(Mg2+) function is affected differently. We thereafter measured the essential activator number for Na+ and K+ with, in excess Mg2+. The results of these experiments reveal that, contrary to the synaptic membrane Na,K-ATPase, the kidney plasma membrane fraction Na,K-ATPase does not possess an Mg2+ dependent cycle and noradrenaline exhibits different modulatory effects on the enzyme system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Skou, J. (1957). Influence of some cations on an adenosine triphosphatase from peripheral nerves. Biochemistry Biophysics Acta, 23, 394–401.

    Article  CAS  Google Scholar 

  2. Clausen, M., Hebers, F., & Poulsen, H. (2017). The Structure and function of the Na,K-ATPase isoforms in health and diseases. Frontiers in Physiology, 8, 371.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Xie, Z. (2003). Molecular mechanisms of Na,K-ATPase mediated signal transducing. Annals of the New York Academy of Science, 986, 497–503.

    Article  CAS  Google Scholar 

  4. Kometiani, Z., Tsakadze, L., & Jariashvili, T. (1984). Functional significance of the effects of neurotransmitters on the Na,K-ATPase system. Journal of Neurochemistry, 42, 1246–1250.

    Article  CAS  PubMed  Google Scholar 

  5. Shioshvili, L., Jariashvili, T., & Kometiani, Z. (2006). The influence of noradrenaline on the Na,K-ATPase system electrogenicity. Journal of Biological Physics and Chemistry, 6(2), 57–61.

    CAS  Google Scholar 

  6. Abashidze, S., Jariashvili, T., & Kometiani, Z. (2001). The effect of EGTA and Ca2+ in regulation of the brain Na,K-ATPase by noradrenaline. BMC Biochemistry, 2, 8.

  7. Sweeney, G., & Klip, A. (1998). Regulation of the Na,K-ATPase by insulin: why and how? Molecular and Cellular Biochemistry, 182(1-2), 121–133.

    Article  CAS  PubMed  Google Scholar 

  8. Xie, Z., & Askari, A. (2002). Na,K-ATPase as a signal transducer. European Journal of Biochemistry, 269(10), 2434–2439.

    Article  CAS  PubMed  Google Scholar 

  9. Rodrigues, G., & de Lores, A. (1990). Effect of tissue specificity of brain soluble fraction on Na,K-ATPase activity. Neurochemistry Research, 15(3), 289–294.

    Article  Google Scholar 

  10. Vague, P., Coste, T. C., Jannot, M. F., Raccah, D., & Tsimaratos, M. (2004). C-peptide, Na,K-ATPase and diabetes. Experimental Diabesity Research, 5, 37–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Morill, G., Koatellow, A., & Askari, A. (2008). Progesterone binding to the alpha 1-subunit of the Na,K-ATPase on the cell surface: insights from computation modeling. Steroids, 73(1), 27–40.

    Article  Google Scholar 

  12. Zhichaun, L., & Zijian, X. (2008). The Na,K-ATPase/Src complex and cardiotonic steroid-activated protein kinase cascades. Pflugers Archiv, 457(3), 634–44.

    Google Scholar 

  13. Kometiani, Z., Tsakadze, L., & Dzhariashvili, T. (1975). Effect of acetylcholine on Na,K-ATPase of synaptasomes. Biokhimia (Moscow, Russia), 40(5), 1039–46.

    CAS  Google Scholar 

  14. Kometiani, Z. (2007). Kinetic analysis of multi-sited enzyme systems. Tbilisi, Georgia: Sakartvelos matsne.

    Google Scholar 

  15. Vizi, A., & Seregi, A. (1982). Receptor independent stimulatory effect of noradrenaline on Na,KATPase in rat brain homogenate. Role of lipid peroxadation. Biochemisry Pharmacology, 31(13), 2231–6.

    Article  Google Scholar 

  16. Hernandez, J. (1992). Na,K-ATPase regulation by neurotransmitters. Neurochemistry International, 20(1), 1–10.

    Article  Google Scholar 

  17. Jariashvili, T. (2001). Some aspects of regulation of Na,K-ATPase by neurotransmitters. Bulletin of the Georgian National Academy of Science, 163(2), 343–345.

    CAS  Google Scholar 

  18. Mustafin, A., Esyrev, O., Danilenko, M., Smagulova, Z., & Turmukhambetova, V. (1984). Cholinergic regulation of Na,KATPase activity of the pig kidney. Biuletten Experiment Biological Medicine, 98(11), 542–3.

    CAS  Google Scholar 

  19. Leladze, M., Nozadze, E., Chkadua, G., & Kometiani, Z. (2001). The K+-activation of the Mg-dependent cycle of Na,K-ATPase. JBPC. Journal of Biological Chemistry, 1, 76–80.

    CAS  Google Scholar 

  20. Chkadua, G., Nozadze, E., Leladze, M., & Kometiani, Z. (2002). Activation mechanism of the Na,K-ATPase system at the excess of Mg2+. Journal of Biological Physics and Chemistry, 1/2, 19–24.

    Article  Google Scholar 

  21. De-Robertis, E. (1969). Structural components of the synaptic region. Structural Neurochemistry, 2, 365–380.

    Article  CAS  Google Scholar 

  22. Whittaker, V. P. (1969). The Synaptosomes. Handbook in Neurochemistry, 2, 327–363. Plenum press, NY.

    Article  CAS  Google Scholar 

  23. Jorgensen, P. (1974). Purification and characterization of Na,K-ATPase. Biochimica et Biophysica Acta, 356, 36–52.

    Article  CAS  PubMed  Google Scholar 

  24. Fiske, G. H., & Subbarow, Y. (1925). The colorimetric determination of phosphorus. Biological Chemistry, 66, 375–400.

    Article  CAS  Google Scholar 

  25. Kazanov, A., & Maslova, M. (1984). The investigation of activation of Na,K-ATPase in the red blood cells of mammals. Journal of Evolutionary Biochemistry and Physiology, 16(5), 81–87.

    Google Scholar 

  26. Lowry, O., Rosenbrough, N., & Randall, R. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193(1), 265–275.

    Article  CAS  Google Scholar 

  27. Chkadua, G., & Kometiani, Z. (1997). The definition of power parameters of enzyme velocity equation by method of kinetic curve form analysis. Bulletin of the Georgian National Academy of Science, 156(2), 293–296.

    CAS  Google Scholar 

  28. Chkadua, G., & Kometiani, Z. (1997). The definition of number of essential activators by means of kinetic curve form analysis. Bulletin of the Georgian National Academy of Science, 156(3), 23–29.

    Google Scholar 

  29. Kometiani, Z., & Vekua, M. (1983). New method for the study of cation center of the Na,K-ATPase system. Biokhimia (Moscow, Russia), 48(6), 1025–30.

    CAS  Google Scholar 

  30. Agekyan, T. (1969). Fundamentals of the theory of errors for astronomers and physicists. Soviet Astronomy, 13, 171.

    Google Scholar 

  31. Kaplan, J. (2002). Biochemistry of Na,K-ATPase. Annual Review of Biochemistry, 71, 511–535.

    Article  CAS  PubMed  Google Scholar 

  32. Jorgensen, P. (1986). Structure, function and regulation of Na,K-ATPase in the kidney. Kidney International, 29(1), 10–20.

    Article  CAS  PubMed  Google Scholar 

  33. Kometiani, Z. (1987). The molecular mechanism of Na,K-ATPase system. BiolNauki, 10, 89–99.

    Google Scholar 

  34. Apell, H., Schneeberger, A., & Sokolov, V. (1998). Partial reactions of the Na,K-ATPase: kinetic analysis and transport properties. Acta Physiologica Scandinavica Supplementum, 643, 235–45.

    CAS  PubMed  Google Scholar 

  35. Arif, E., & Nihalani, D. (2019). Beta 2- adrenergic receptor in kidney biology: a current prospective. Nephrology, 24, 497–503.

    Article  CAS  PubMed  Google Scholar 

Download references

Author contributions

All co-authors participated in the research and article preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gvantsa Chkadua.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

The rats experienced no suffering prior to death, as their death was caused by decapitation. All experiments were approved by the animal care and use committee at the I. Beritashvili Center of Experimental Biomedicine.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chkadua, G., Nozadze, E., Tsakadze, L. et al. Some Kinetic Features of Na,K-ATPase and Sensitivity to Noradrenaline. Cell Biochem Biophys 80, 23–29 (2022). https://doi.org/10.1007/s12013-021-01032-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-021-01032-6

Keywords

Navigation