Skip to main content
Log in

Phase Equilibria for a Zn–Ag Alloy during Vacuum Distillation

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

When impurities are removed from crude lead by metallic zinc, a silver foam (SF) containing lead, zinc, and silver forms on the melt surface along. Vacuum distillation can be used to separate the SF components, since it is one of the most environmentally friendly and highly efficient technologies in pyrometallurgy. Phase diagrams are used to choose the system temperature and pressure and to estimate the efficiency of the separation of the components during vacuum distillation. The aim of this work is to calculate VLE (vapor–liquid equilibrium) states, including the temperature dependence of the phase composition (Tx), at a given pressure for binary Zn–Ag alloys during vacuum distillation using MIVM (molecular interaction volume model) and SMIVM (simple molecular interaction volume model), which contains a smaller number of variable system parameters, in particular, for fixed values of coordination numbers Zi and molecular volume Vmi of the alloy components. As a result, the adequacy of SMIVM used in the calculation is confirmed. Information on the influence of the temperature and the residual pressure in the system on the sublimation and separation of the metals from Zn–Ag alloys of variable composition is obtained. The saturated vapor pressures (Pa) for zinc (\(p_{{{\text{Zn}}}}^{*}\) = 5.79 × 102–3.104 × 104) and silver (\(p_{{{\text{Ag}}}}^{*}\) = 5.25 × 10–9–5.1 × 10–5) at T = 823–1073 K are determined. The large differences between \(p_{{{\text{Zn}}}}^{*}\) and \(p_{{{\text{Ag}}}}^{*}\) cause high values of separation coefficient log βZn = 8.32–12.18 and imply the possibility of separation of zinc by sublimation into the gas phase (βZn > 1) and the concentration of silver in the liquid phase. An increase in the mole fraction of silver in the alloy composition from 0.1 to 0.9 and or in the system temperature from 823 to 1073 K leads to an increase in the mole fraction of silver in the gas phase from 1 × 10–15 to 8.5 × 10–7. The following thermodynamic functions are calculated for the equilibrium state of the liquid and gas phases of the Zn–Ag system: \(G_{{\text{m}}}^{E}\) = 0.08–1.36 kJ/mol, –\(H_{{\text{m}}}^{E}\) = 1.52–5.73 kJ/mol, and \(S_{{\text{m}}}^{E}\) = (1.57–5.38) × 10–3 J/(mol K). The equilibrium VLE diagrams of a Zn–Ag alloy can be used at the preliminary stages of designing pilot equipment for vacuum distillation and to choose the temperature and pressure ranges in the system in order to manufacture Zn- and Ag-containing products of a given composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. W. M. Chen, B. Yang, L. Chai, X. Min, Y. Dai, and C. Zhang, “Vacuum distillation refining of crude lithium(I),” Trans. Nonfer. Met. Soc. China 11 (6), 937–941 (2001).

    Google Scholar 

  2. X.-F. Kong, B. Yang, H. Xiong, L.-X. Kong, “Thermodynamics of removing impurities from crude lead by vacuum distillation refining,” Trans. Nonfer. Met. Soc. China 24 (6), 1946–1950 (2014).

    Article  CAS  Google Scholar 

  3. N. Barbin, D. Terentiev, S. Alexeev, and T. Barbina, Comp. Mater. Sci. 66, 28–33 (2013). https://doi.org/10.1016/j.commatsci.2012.06.013

    Article  CAS  Google Scholar 

  4. Y. N. Dai, “Vacuum distillation and separation of Pb–Sn alloy,” Nonfer. Metal. 9, 24–30 (1977).

    Google Scholar 

  5. Y. N. Dai, “Vacuum distillation of Pb–Sn alloy,” Nonfer. Metal. 32, 73–79 (1980).

    CAS  Google Scholar 

  6. Y. N. Dai and A. P. He, “Vacuum distillation of lead–tin alloy,” J. Kunming Inst. Technol. 14, 16–27 (1989).

    Google Scholar 

  7. V. N. Volodin, R. A. Isakova, and V. E. Khrapunov, “Liquid-vapour phase equilibrium in metal systems and parameters of vacuum distillation processes forecasting,” Non-Ferrous Met., No. 1, 38–42 (2011).

  8. A. G. Morachevskii, N. A. Smirnova, and E. M. Piotrovskaya, Thermodynamics of Liquid–Vapor Equilibrium (Khimiya, Leningrad, 1989).

    Google Scholar 

  9. V. N. Volodin, V. E. Khrapunov, N. M. Burabaeva, and I. A. Marki, Russ. J. Non-Ferrous Met. 51 (3), 205–211 (2010). https://doi.org/10.3103/S1067821210030028

    Article  Google Scholar 

  10. Y. Zhang, J. Deng, W. Jiang, Q. Mei, and D. Liu, “Application of vacuum distillation in refining crude lead,” Vacuum 148, 140–148 (2018).

    Article  CAS  Google Scholar 

  11. J. Deng, Y. Zhang, W. Jiang, Q. Mei, and D. Liu, “Harmless, industrial vacuum-distillation treatment of noble lead,” Vacuum 149, 306–312 (2018).

    Article  CAS  Google Scholar 

  12. J. C. Ding, T. F. Zhang, R. S. Mane, K.-H. Kim, M. C. Kang, C. W. Zou, and Q. M. Wang, “Low-temperature deposition of nanocrystalline Al2O3 films by ion source-assisted magnetron sputtering,” Vacuum 149, 284–290 (2018).

    Article  CAS  Google Scholar 

  13. S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, and H. Zhang, “Hot workability of PM 8009Al/Al2O3 particle-reinforced composite characterized using processing maps,” Vacuum 149, 297–305 (2018).

    Article  CAS  Google Scholar 

  14. Materials Science and Technology: A Comprehensive Treatment. 1. Structure of Solids, Ed. by V. Gerold (VCH, Weinheim, 1993).

    Google Scholar 

  15. I. A. Afanasieva, V. V. Bobkov, V. V. Gritsyna, Yu. E. Logachev, I. I. Okseniuk, A. A. Skrypnyk, and D. I. Shevchenko, “On excited particle formation in crossed E × H fields,” Vacuum 149, 124–128 (2018).

    Article  CAS  Google Scholar 

  16. M. Shi, C. Zhu, M. Wei, Z. He, and M. Lu, “Dy3+-, Tb3+-, and Eu3+-activated NaCa4(BO3)3 phosphors for lighting based on near ultraviolet light emitting diodes,” Vacuum 149, 343–349 (2018).

    Article  CAS  Google Scholar 

  17. A. A. Korolev, S. A. Krayukhin, and G. I. Mal’tsev, “Equilibrium gas–liquid systems for an Sb–Ag alloy during vacuum distillation,” Obrab. Met. (Tekhn., Oborud., Instr.) 4 (77), 68–83 (2017).

  18. A. A. Korolev, G. I. Mal’tsev, K. L. Timofeev, and V. G. Lobanov, Obrab. Met. (Tekhn., Oborud., Instr.), No. 1, 6–21 (2018). https://doi.org/10.17212/1994-6309-2018-20.1-6-21

  19. M. Chakraborty and S. Bhattacharyya, “Air-annealed growth and characterization of Cd1–xZnxTe thin films grown from CdTe/ZnTe/CdTe multi-stacks,” Vacuum 149, 156–167 (2018).

    Article  CAS  Google Scholar 

  20. L. Liang, L. Dachun, W. Heli, L. Kaihua, D. Juhai, and J. Wenlong, “Removal of chloride impurities from titanium sponge by vacuum distillation,” Vacuum 152, 166–172 (2018).

    Article  Google Scholar 

  21. J. Trigueiro, N. Bundaleski, and O. M. N. D. Teodoro, “Monitoring dynamics of different processes on rutile TiO2(110) surface by following work function change,” Vacuum 152, 327–329 (2018).

    Article  CAS  Google Scholar 

  22. L. Deng, S. Lu, B. Tang, and Y. Lin, “Effect of Si on thermal stability of Nb–22.5Cr alloy,” Vacuum 152, 312–318 (2018).

    Article  CAS  Google Scholar 

  23. L. Wang, P. Guo, P. Zhao, L. Kong, and Z. Tian, “Thermodynamic and experimental study of C–S system and C–S–Mo system,” Vacuum 152, 330–336 (2018).

    Article  CAS  Google Scholar 

  24. H. Baránková, L. Bardos, K. Silins, and A. Bardos, “Reactive deposition of TiN films by magnetron with magnetized hollow cathode enhanced target,” Vacuum 152, 123–127 (2018).

    Article  Google Scholar 

  25. A. O. Zamchiy, E. A. Baranov, I. E. Merkulova, V. A. Volodin, M. R. Sharafutdinov, and S. Ya. Khmel, “Effect of annealing in oxidizing atmosphere on optical and structural properties of silicon suboxide thin films obtained by gas-jet electron beam plasma chemical vapor deposition method,” Vacuum 152, 319–326 (2018).

    Article  CAS  Google Scholar 

  26. S. P. Hu, T. Y. Hu, Y. Z. Lei, X. G. Song, D. Liu, J. Cao, and D. Y. Tang, “Microstructural evolution and mechanical properties of vacuum brazed and Ti2AlNb alloy Ti60 alloy with Cu75Pt filler metal,” Vacuum 152, 340–346 (2018).

    Article  CAS  Google Scholar 

  27. A. A. Korolev, S. A. Krayukhin, and G. I. Mal’tsev, Vestn. YUrGU, Ser. Metall. 17 (2), 22–33 (2017). https://doi.org/10.14529/met170203

    Article  Google Scholar 

  28. A. A. Korolev, S. A. Krayukhin, and G. I. Mal’tsev, Vestn. PNIPU. Mashinostr., Materialoved. 19 (3), 75–99 (2017). https://doi.org/15593/2224-9877/2017.3.05

  29. A. A. Korolev, S. A. Krayukhin, and G. I. Mal’tsev, “Phase equilibria for a Pb–Zn–Ad alloy during vacuum distillation,” Rasplavy, No. 5, 435–450 (2017).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. I. Maltsev.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korolev, A.A., Timofeev, K.L. & Maltsev, G.I. Phase Equilibria for a Zn–Ag Alloy during Vacuum Distillation. Russ. Metall. 2021, 978–986 (2021). https://doi.org/10.1134/S0036029521080152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521080152

Keywords:

Navigation