Skip to main content
Log in

Electroreduction of Nickel(II) Chloride and Cobalt(II) Chloride Mixtures in a Heat Activated Battery

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The discharge characteristics of a heat activated battery containing NiCl2–CoCl2 mixtures as a positive electrode are studied. The battery cell discharge temperature is found to decrease when the mixtures are used instead of individual nickel(II) and cobalt(II) chlorides. The minimum temperature at which a stable discharge plateau is detected is 480°C. The maximum capacity of the discharge plateau is 0.33 A h g–1. The optimum composition of the cathode mixture contains 20 wt % CoCl2. The composition and morphology of the reduction products of the cathodic materials are determined. The initial nickel and cobalt chlorides are reduced to metals during battery cell discharge. The reduction process is accompanied by the diffusion of lithium halides from the separator to the cathodic space. The reduced metals (Ni, Co) form a network of branched dendrites covered with a salt film based on lithium chloride. The density and morphology of the dendritic deposit is determined by the composition of the initial cathodic mixture. The salt film consists of solid solutions and peritectics of the Li, Co, Ni||Cl, Br, F system. The reduction of M2+ (where M = Ni, Co) to the M0 metal is shown to proceed via a melt mechanism in the diffusion kinetics mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. R. A. Guidotti and P. Masset, J. Power Sources 161, 1443–1449 (2006). https://doi.org/10.1016/j.jpowsour.2006.06.013

    Article  CAS  Google Scholar 

  2. R. Guidotti, F. W. Reinhardt, J. Dai, and D. E. Reisner, J. Power Sources 160, 1456–1464 (2006). https://doi.org/10.1016/jjpowsour.2006.02.025

    Article  CAS  Google Scholar 

  3. P. A. Nelson, J. Power Sources 29, 565–577 (1990). https://doi.org/10.1016/0378-7753(90)85026-9

    Article  CAS  Google Scholar 

  4. P. J. Masset and R. A. Guidotti, J. Power Sources 177, 595–609 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.017

    Article  CAS  Google Scholar 

  5. P. J. Masset and R. A. Guidotti, J. Power Sources 178, 456–466 (2008). https://doi.org/10.1016/j.jpowsour.2007.11.073

    Article  CAS  Google Scholar 

  6. P. Butler, C. Wagner, R. Guidotti, and I. Francis, J. Power Sources 136, 240–245 (2004). https://doi.org/10.1016/jjpowsour.2004.03.034

    Article  CAS  Google Scholar 

  7. M. Au, J. Power Sources 115, 360–366 (2003). https://doi.org./10.1016/S0378-7753(02)00627-4.

    Article  CAS  Google Scholar 

  8. P. J. Masset, Z. Naturforsch. 63a, 596–602 (2008). https://doi.org/10.1515/zna-2008-0911

  9. O. V. Volkova, V. V. Zakharov, and O. G. Reznitskikh, “Electroreduction of chromium(III) chloride in a thermal battery,” Russ. Metall. (Metally), No. 8, 655–659 (2017).

  10. O. V. Volkova and V. V. Zakharov, “Electroreduction of chromium(III) chloride and molybdenum(VI) oxide mixtures in a thermally activated battery,” Russ. Metall. (Metally), No. 2, 201–204 (2018).

  11. S. A. Barnashov, A. I. Eliseev, N. M. Shchetkin, V. A. Zagainov, I. V. Koroleva, E. V. Radetskaya, A. I. Bondarenko, et al., “Thermal battery,” RF Patent 2369944, 2007.

  12. O. V. Volkova, V. V. Zakharov, E. G. Vovkotrub, S. V. Plaksin, and S. V. Pershina, “Electroreduction of mixtures of nickel(II) chloride and molybdenum(VI) oxide in a thermally activated battery,” Rasplavy, No. 5, 411–422 (2019).

    Article  Google Scholar 

  13. V. V. Zakharov et al., “Method of manufacturing lithium–boron composite and reactor,” RF Patent 2395603, 2010.

  14. H.-J. Seifert, Z. Anorg. Allg. Chem. 307, 137–144 (1961). https://doi.org/10.1002/zaac.19613070305

    Article  Google Scholar 

  15. M. S. Golubeva and B. S. Medvedev, “Ternary reciprocal system of lithium and nickel chlorides and sulfates,” Zh. Neorg. Khim. 7 (2), 2600–2603 (1962).

    CAS  Google Scholar 

  16. M. V. Smirnov, Electrode Potentials in Molten Chlorides (Nauka, Moscow, 1973).

    Google Scholar 

  17. A. A. Elshin, “Electrochemical behavior of cathodes of high-temperature batteries based on transition metal chlorides,” Candidate’s Dissertation in Chemistry (Sverdlovsk, 1990).

Download references

ACKNOWLEDGMENTS

The studies were carried out using the equipment of the Shared Access Center Composition of Compounds at High-Temperature Electrochemistry Institute, Ural Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Volkova.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkova, O.V., Zakharov, V.V., Il’ina, E.A. et al. Electroreduction of Nickel(II) Chloride and Cobalt(II) Chloride Mixtures in a Heat Activated Battery. Russ. Metall. 2021, 957–963 (2021). https://doi.org/10.1134/S003602952108022X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602952108022X

Keywords:

Navigation