Skip to main content
Log in

Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Fayalite Fe2SiO4 is synthesized by the solid-state reaction without ball milling. The obtained powder is further structurally and electrochemically examined. Field emission scanning electron microscopy (FESEM) showed that microsized powder is obtained. X-ray powder diffraction (XRD) pattern is used for both phase identification and crystal structure Rietveld refinement. The structure is refined in the orthorhombic Pbnm space group. Mössbauer spectroscopy revealed traces of Fe3+ impurity. The bond valence mapping method is applied for the first time on Fe2SiO4 framework. It shows isolated, non-connected isosurfaces of constant E(Li), which further supports the assumptions of the conversion reactions. Electrochemical performances are investigated through galvanostatic cycling, cyclic voltammetry, and electrochemical impedance spectroscopy (EIS). Ex-situ XRD and Fourier transform infrared spectroscopy (FTIR) analyses are combined to monitor phase change after galvanostatic cycling and to reveal the working mechanism during electrochemical lithiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

The raw data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. M. Li, J. Lu, Z. Chen, K. Amine, 30 Years of Lithium-Ion Batteries. Adv. Mater. 30, 1–24 (2018). https://doi.org/10.1002/adma.201800561

    Article  CAS  Google Scholar 

  2. A. Eftekhari, Low voltage anode materials for lithium-ion batteries. Energy Storage Mater. 7, 157–180 (2017). https://doi.org/10.1016/j.ensm.2017.01.009

    Article  Google Scholar 

  3. I. Mihailova, D. Mehandjiev, Characterization of Fayalite From Copper Slags. J. Univ. Chem. Technol. Metall. 45, 317–326 (2010)

    CAS  Google Scholar 

  4. Q. Zhang, S. Ge, H. Xue, X. Wang, H. Sun, A. Li, Fabrication of a fayalite@C nanocomposite with superior lithium storage for lithium ion battery anodes. RSC Adv. 4, 58260 (2014). https://doi.org/10.1039/c4ra10206a

    Article  CAS  Google Scholar 

  5. Q. Zhang, Y. Meng, C. Yan, L. Zhang, Synthesis of Mesoporous Fe2SiO4/C Nanocomposites and Evaluation of Their Performance as Materials for Lithium-Ion Battery Anodes. ChemistrySelect 3, 11902–11907 (2018). https://doi.org/10.1002/slct.201802265

    Article  CAS  Google Scholar 

  6. P. Guo, C. Wang, Good lithium storage performance of Fe2SiO4 as an anode material for secondary lithium ion batteries. RSC Adv. 7, 4437 (2017). https://doi.org/10.1039/c6ra26376c

    Article  CAS  Google Scholar 

  7. Q. Zhang, C. Yan, Q. Dai, C. Su, Facile synthesis and lithium storage properties of engineered ultrafine porous Fe2SiO4/C composites. J. Electroanal. Chem. 807, 29–36 (2017). https://doi.org/10.1016/j.jelechem.2017.11.015

    Article  CAS  Google Scholar 

  8. D. Jugović, M. Mitrić, M. Kuzmanović, N. Cvjetićanin, S. Škapin, B. Cekić, V. Ivanovski, D. Uskoković, Preparation of LiFePO4/C composites by co-precipitation in molten stearic acid. J. Power. Sources. 196, 4613–4618 (2011). https://doi.org/10.1016/j.jpowsour.2011.01.072

    Article  CAS  Google Scholar 

  9. F. Mueller, D. Bresser, N. Minderjahn, J. Kalhoff, S. Menne, S. Krueger, M. Winter, S. Passerini, Cobalt orthosilicate as a new electrode material for secondary lithium-ion batteries. Dalt. Trans. 43, 15013–15021 (2014). https://doi.org/10.1039/c4dt01325e

    Article  CAS  Google Scholar 

  10. X.X. Yang, J. Qiu, Carbon-Coated Fe3O4@Fe2SiO4 Core-Shell Nanocomposites Revealing Boosted 4 5 6 Electrochemical Performance as Anode Material for LIB, Mater. Res. Express. 5, 095504 (2018).

  11. X. Wang, L. Zhang, Y. Ma, Q. Zhang, Effect of ball-milling solvent on the structure and lithium storage performance of Fe2SiO4/C nanocomposite. Mater. Res. Innov. 00, 1–6 (2020). https://doi.org/10.1080/14328917.2020.1818463

    Article  CAS  Google Scholar 

  12. Q. Zhang, L. Lu, S. Ge, Synthesis of Fe2SiO4@C nanocomposites via a solid state reaction by controlling calcinating temperature, in: Proc. 3rd Int. Conf. Adv. Energy Environ. Sci. 2015, 491–494 (2015). https://doi.org/10.2991/icaees-15.2015.91

  13. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 2, 65–71 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  14. TOPAS, http://www.topas-academic.net/. (Accessed 1 Feb 2021).

  15. Z. Wang, B. Peng, L. Zhang, Z. Zhao, D. Liu, N. Peng, D. Wang, Y. He, Y. Liang, H. Liu, Study on Formation Mechanism of Fayalite (Fe2SiO4) by Solid State Reaction in Sintering Process. Jom. 70, 539–546 (2018). https://doi.org/10.1007/s11837-017-2699-6

    Article  CAS  Google Scholar 

  16. S. Akimoto, H. Fujisawa, Olivine-spinel solid solution equilibria in the system Mg2SiO4 -Fe2SiO4. J. Geophys. Res. 73, 1467–1479 (1968). https://doi.org/10.1029/jb073i004p01467

    Article  CAS  Google Scholar 

  17. I.D. Brown, Recent developments in the methods and applications of the bond valence model. Chem. Rev. 109, 6858–6919 (2009). https://doi.org/10.1021/cr900053k

    Article  CAS  Google Scholar 

  18. M. Sale, M. Avdeev, 3DBVSMAPPER: A program for automatically generating bond-valence sum landscapes. J. Appl. Crystallogr. 45, 1054–1056 (2012). https://doi.org/10.1107/S0021889812032906

    Article  CAS  Google Scholar 

  19. M.D. Dyar, E.C. Sklute, O.N. Menzies, P.A. Bland, D. Lindsley, T. Glotch, M.D. Lane, M.W. Schaefer, B. Wopenka, R. Klima, J.L. Bishop, T. Hiroi, C. Pieters, J. Sunshine, Spectroscopic characteristics of synthetic olivine: An integrated multi-wavelength and multi-technique approach. Am. Mineral. 94, 883–898 (2009). https://doi.org/10.2138/am.2009.3115

    Article  CAS  Google Scholar 

  20. X. Kan, J.M.D. Coey, Mössbauer spectra, magnetic and electrical properties of laihunite, a mixed valence iron olivine mineral, Am. Mineral. 70,  576–580 (1985). http://www.minsocam.org/ammin/AM70/AM70_576.pdf

  21. S. Chatterjee, T. Saha-Dasgupta, First-principles simulations of structural, electronic, and magnetic properties of vacancy-bearing Fe silicates, Phys. Rev. B - Condens. Matter. Mater. Phys. 81, 1–7 (2010). https://doi.org/10.1103/PhysRevB.81.155105

  22. A. Le Bail, Whole powder pattern decomposition methods and applications: A retrospection. Powder Diffr. 20, 316–326 (2005). https://doi.org/10.1154/1.2135315

    Article  CAS  Google Scholar 

  23. M.T. Paques-Ledent, P. Tarte, Vibrational studies of olivine-type compounds—I. The i.r. and Raman spectra of the isotopic species of Mg2SiO4, Spectrochim. Acta Part A Mol. Spectrosc. 29,  1007–1016 (1973). https://doi.org/10.1016/0584-8539(73)80140-0

  24. V.E. Hamilton, Thermal infrared (vibrational) spectroscopy of Mg-Fe olivines: A review and applications to determining the composition of planetary surfaces. Chem. Erde 70, 7–33 (2010). https://doi.org/10.1016/j.chemer.2009.12.005

    Article  CAS  Google Scholar 

  25. O. Qafoku, E.S. Ilton, M.E. Bowden, L. Kovarik, X. Zhang, R.K. Kukkadapu, M.H. Engelhard, C.J. Thompson, H.T. Schaef, B.P. McGrail, K.M. Rosso, J.S. Loring, Synthesis of nanometer-sized fayalite and magnesium-iron(II) mixture olivines. J. Colloid. Interface. Sci. 515, 129–138 (2018). https://doi.org/10.1016/j.jcis.2018.01.036

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia. D. Jugović and M. Milović acknowledge the support of the Ministry of Education, Science and Technological Development of Republic of Serbia, through agreements related to the realization and financing of scientific research work of the Institute of Technical Sciences of SASA (Contract No. 451-03-9/2021-14/200175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dragana Jugović.

Ethics declarations

Conflict of interests

There is no potential conflict of interest relevant to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugović, D., Milović, M., Ivanovski, V.N. et al. Microsized fayalite Fe2SiO4 as anode material: the structure, electrochemical properties and working mechanism. J Electroceram 47, 31–41 (2021). https://doi.org/10.1007/s10832-021-00260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-021-00260-9

Keywords

Navigation