Skip to main content

Advertisement

Log in

Isolation and identification of Amycolatopsis sp. strain 1119 with potential to improve cucumber fruit yield and induce plant defense responses in commercial greenhouse

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Background and aims

The application of chemical fungicides is the first strategy to control plant fungal diseases. This approach is highly polluting for the environment and affects human health. The artificial introduction of beneficial rhizobacteria into the soil can be an economical and practical way to control phytopathogenic fungi in commercial greenhouses. Here, we recount the travel of a rare Actinomycete (Amycolatopsis strain 1119) from a maize field to a commercial cucumber greenhouse.

Methods and results

Culturable bacteria from rhizosphere and bulk soils of dicot and monocot crops were isolated and screened. About 20% of the representative colonies showed Actinobacteria appearance. 106 Actinobacteria that had antagonistic activity against Phytophthora capsici and were able to produce IAA-like molecules were selected for further analysis. Two Streptomyces strains (432 and 615) and 2 Amycolatopsis strains (3513 and 1119) that showed a positive effect on plant growth in greenhouse conditions were selected to evaluate the biocontrol potential. Strains 432, 3513, 615 and 1119 controlled incidence of the damping-off by 65%, 42%, 83% and 100% respectively. Application of strain 1119 under commercial greenhouse conditions resulted in an increase in fruit yield (20%) and a decrease in fruit nitrate content (70%). Increased antioxidant enzymes activity and increased LOX and APX transcription and also, increased expression of two genes PR1-1a and GLU (SAR genes) showed that strain 1119 could induce both ISR and SAR in cucumber without pathogen exposure.

Conclusion

Our results demonstrate that the Amycolatopsis strain 1119 has a great potential to be used as an active principle for bio-inoculant development because of the ability to improve cucumber fruit yield and induce plant defense responses in a commercial greenhouse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2019) Streptomyces strains induce resistance to Fusarium oxysporum f. sp. lycopersici race 3 in tomato through different molecular mechanisms. Front Microbiol 10:1505

    Article  PubMed  PubMed Central  Google Scholar 

  • Abbasi S, Safaie N, Sadeghi A, Shamsbakhsh M (2020) Tissue-specific synergistic bio-priming of pepper by two Streptomyces species against Phytophthora capsici. PLoS ONE 15:e0230531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari A, Gharanjik S, Koobaz P, Sadeghi A (2020) Plant growth promoting Streptomyces strains are selectively interacting with the wheat cultivars especially in saline conditions. Heliyon 6:e03445

    Article  PubMed  PubMed Central  Google Scholar 

  • Alekhya G, Gopalakrishnan S (2016) Exploiting plant growth-promoting Amycolatopsis sp. in chickpea and sorghum for improving growth and yield. Legume Res 29:225–231

    Google Scholar 

  • Alexander D, Zuberer D (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil 12:39–45

    Article  CAS  Google Scholar 

  • Alipour Kafi S, Arabhosseini S, Karimi E, Koobaz P, Mohammadi A, Sadeghi A (2021) Pseudomonas putida 3–57 induces cucumber (Cucumis sativus L.) defense responses and improves fruit quality characteristics under commercial greenhouse conditions. Sci Hortic 280:109942

    Article  CAS  Google Scholar 

  • Allard-Massicotte R, Tessier L, Lécuyer F, Lakshmanan V, Lucier J, Garneau D, Caudwell L, Vlamakis H, Bais HP, Beauregard PB (2016) Bacillus subtilis early colonization of Arabidopsis thaliana roots involves multiple chemotaxis receptors. Mbio 7(6):e01664-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakker MG, Glover JD, Mai JG, Kinkel LL (2010) Plant community effects on the diversity and pathogen suppressive activity of soil Streptomycetes. Appl Soil Ecol 46:35–42

    Article  Google Scholar 

  • Bakker MG, Otto-Hanson L, Lange A, Bradeen JM, Kinkel LL (2013) Plant monocultures produce more antagonistic soil Streptomyces communities than high-diversity plant communities. Soil Biol 65:304–312

    Article  CAS  Google Scholar 

  • Balaraju K, Kim CJ, Park DJ, Nam KW, Zhang K, Sang MK, Park K (2016) Paromomycin derived from Streptomyces sp. AG-P 1441 induces resistance against two major pathogens of chili pepper. Microb Biotechnol 26:1542–1550

    Article  CAS  Google Scholar 

  • Bashan Y, Kamnev AA, de-Bashan LE (2013) Tricalcium phosphate is inappropriate as a universal selection factor for isolating and testing phosphate-solubilizing bacteria that enhance plant growth: a proposal for an alternative procedure. Biol Fertil Soils 49:465–479

    Article  CAS  Google Scholar 

  • Berger LR, Reynold DM (1958) The chitinase system of a strain of Streptomyces griseus. BBA-Geb Subjects 29:522–534

    CAS  Google Scholar 

  • Borah A, Thakur D (2020) Phylogenetic and functional characterization of culturable endophytic Actinobacteria associated with Camellia spp. for growth promotion in commercial tea cultivars. Front Microbiol 11:318

    Article  PubMed  PubMed Central  Google Scholar 

  • Brzezinska MS, Jankiewicz U, Burkowska A, Walczak M (2014) Chitinolytic microorganisms and their possible application in environmental protection. Curr Microbiol 68:71–81

    Article  Google Scholar 

  • Café-Filho AC, Ristaino JB (2008) Fitness of isolates of Phytophthora capsici resistant to mefenoxam from squash and pepper fields in North Carolina. Plant Dis 92:1439–1443

    Article  PubMed  Google Scholar 

  • Chaurasia A, Meena B, Tripathi A, Pandey K, Rai A, Singh B (2018) Actinomycetes: an unexplored microorganisms for plant growth promotion and biocontrol in vegetable crops. World J Microbi Biot 34:132

    Article  CAS  Google Scholar 

  • Choudhary DK, Prakash A, Johri B (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47:289–297

    Article  CAS  PubMed  Google Scholar 

  • Chun J, Goodfellow M (1995) A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45:240–245

    Article  CAS  PubMed  Google Scholar 

  • Conrath U (2006) Systemic acquired resistance. Plant Signal Behav 1:179–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Cordovez V, Carrion VJ, Etalo DW, Mumm R, Zhu H, Van Wezel GP, Raaijmakers JM (2015) Diversity and functions of volatile organic compounds produced by Streptomyces from a disease-suppressive soil. Front Microbiol 6:1081

    Article  PubMed  PubMed Central  Google Scholar 

  • Dahal B, NandaKafle G, Perkins L, Brözel VS (2017) Diversity of free-Living nitrogen fixing Streptomyces in soils of the badlands of South Dakota. Microbiol Res 195:31–39

    Article  CAS  PubMed  Google Scholar 

  • Davelos AL, Xiao K, Samac DA, Martin AP, Kinkel LL (2004) Spatial variation in Streptomyces genetic composition and diversity in a prairie soil. Microb Ecol 48:601–612

    Article  CAS  PubMed  Google Scholar 

  • de Weert S, Vermeiren H, Mulders IHM et al (2002) Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Mol Plant Microbe Interact 15:1173–1180

    Article  PubMed  Google Scholar 

  • Dubois M, Gilles KA, Hamilton JK, Pt R, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Chem 28:350–356

    Article  CAS  Google Scholar 

  • Edwardsa J, Johnsona C, Santos-Medellín C et al (2015) Structure, variation, and assembly of the root-associated microbiomes of rice. PNAS 112:E911–E920

    Google Scholar 

  • El-Tarabily KA, Hardy GESJ, Sivasithamparam K (2010) Performance of three endophytic Actinomycetes in relation to plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber under commercial field production conditions in the United Arab Emirates. Eur J Plant Pathol 128:527–539

    Article  CAS  Google Scholar 

  • El-Tarabily KA, Sivasithamparam K (2006) Non-Streptomycete Actinomycetes as biocontrol agents of soil-borne fungal plant pathogens and as plant growth promoters. Soil Biol Biochem 38:1505–1520

    Article  CAS  Google Scholar 

  • El-Tarabily K, Nassar A, Hardy GSJ, Sivasithamparam K (2009) Plant growth promotion and biological control of Pythium aphanidermatum, a pathogen of cucumber, by endophytic Actinomycetes. Appl Microbiol 106:13–26

    Article  CAS  Google Scholar 

  • Esmaeil Zade NSE, Sadeghi A, Moradi P (2019) Streptomyces strains alleviate water stress and increase peppermint (Mentha piperita) yield and essential oils. Plant Soil 434:441–452

    Article  CAS  Google Scholar 

  • Genilloud O (2017) Actinomycetes: still a source of novel antibiotics. Nat Prod Rep 34:1203–1232

    Article  CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Vidya MS, Rathore AJS (2013) Plant growth-promoting activities of Streptomyces spp. in sorghum and rice. Springerplus 2:574

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopalakrishnan S, Srinivas V, Naresh N, Alekhya G, Sharma R (2019) Exploiting plant growth-promoting Amycolatopsis sp. for bio-control of charcoal rot of sorghum (Sorghum bicolor L.) caused by Macrophomina phaseolina (Tassi) Goid. Arch Phytopathol Pflanzenschutz 52:543–559

    Article  CAS  Google Scholar 

  • Henning SM, Yang J, Shao P et al (2017) Health benefit of vegetable/fruit juice-based diet: role of microbiome. Sci Rep 7:1–9

    Article  Google Scholar 

  • Himaman W, Thamchaipenet A, Pathom-aree W, Duangmal K (2016) Actinomycetes from Eucalyptus and their biological activities for controlling Eucalyptus leaf and shoot blight. Microbiol Res 188:42–52

    Article  PubMed  Google Scholar 

  • Huang P, de-Bashan L, Crocker T, Kloepper JW, Bashan Y (2017) Evidence that fresh weight measurement is imprecise for reporting the effect of plant growth-promoting (rhizo) bacteria on growth promotion of crop plants. Biol Fertil Soils 53:199–208

    Article  CAS  Google Scholar 

  • Hsu S, Lockwood J (1975) Powdered chitin agar as a selective medium for enumeration of Actinomycetes in water and soil. Appl Environ Microbiol 29:422–426

    Article  CAS  Google Scholar 

  • Islam S, Akanda AM, Prova A, Islam MT, Hossain MM (2016) Isolation and identification of plant growth promoting rhizobacteria from cucumber rhizosphere and their effect on plant growth promotion and disease suppression. Front Microbiol 6:1360

    Article  PubMed  PubMed Central  Google Scholar 

  • Joe MM, Deivaraj S, Benson A, Henry AJ, Narendrakumar G (2018) Soil extract calcium phosphate media for screening of phosphate-solubilizing bacteria. Agric Nat Resour 52:305–308

    Google Scholar 

  • Joo G-J (2005) Production of an anti-fungal substance for biological control of Phytophthora capsici causing phytophthora blight in red-peppers by Streptomyces halstedii. Biotechnol Lett 27:201–205

    Article  CAS  PubMed  Google Scholar 

  • Kamilova F, Kravchenko LV, Shaposhnikov AI, Azarova T, Makarova N, Lugtenberg B (2006) Organic acids, sugars, and L-tryptophane in exudates of vegetables growing on stonewool and their effects on activities of rhizosphere bacteria. Mol Plant Microbe Interact 19:250–256

    Article  CAS  PubMed  Google Scholar 

  • Karimi E, Sadeghi A, Abbaszadeh Dahaji P, Dalvand Y, Omidvari M, Kakuei Nezhad M (2012) Biocontrol activity of salt tolerant Streptomyces isolates against phytopathogens causing root rot of sugar beet. Biocontrol Sci Technol 22:333–349

    Article  Google Scholar 

  • Kinkel LL, Bakker MG, Schlatter DC (2011) A coevolutionary framework for managing disease-suppressive soils. Annu Rev Phytopathol 49:47–67

    Article  CAS  PubMed  Google Scholar 

  • Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant Microbe Interact 15:734–741

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Dubey A (2020) Rhizosphere microbiome: engineering bacterial competitiveness for enhancing crop production. J Adv Res 24:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landwehr W, Wolf C, Wink J (2016) Actinobacteria and Myxobacteria—two of the most important bacterial resources for novel antibiotics. In: Stadler M, Dersch P (eds.) How to overcome the antibiotic crisis. Springer, pp 273–302

  • Lareen A, Burton F, Schäfer P (2016) Plant root-microbe communication in shaping root microbiomes. Plant Mol Biol 90:575–587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lay C-YB, Terrence H, Hamel C, Harker KN, Mohr R, Greer CW, Yergeau É, St-Arnaud M (2018) Canola root–associated microbiomes in the Canadian Prairies. Front Microbiol 9:1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X, Huang P, Wang Q et al (2014) Staurosporine from the endophytic Streptomyces sp. strain CNS-42 acts as a potential biocontrol agent and growth elicitor in cucumber. Anton Leeun Int J G 106:515–525

    Article  Google Scholar 

  • Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME (2019) Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol 19:1–19

    Article  Google Scholar 

  • Mercado-Blanco J, Alós E, Rey MD, Prieto P (2016) Pseudomonas fluorescens PICF7 displays an endophytic lifestyle in cultivated cereals and enhances yield in barley. FEMS Microbiol Ecol 92:fiw092

    Article  PubMed  Google Scholar 

  • Mingma R, Pathom-aree W, Trakulnaleamsai S, Thamchaipenet A, Duangmal K (2014) Isolation of rhizospheric and roots endophytic Actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J Microbiol Biotechnol 30:271–280

    Article  CAS  PubMed  Google Scholar 

  • Muriel C, Jalvo B, Redondo-Nieto M, Rivilla R, Martín M (2015) Chemotactic motility of Pseudomonas fluorescens F113 under aerobic and denitrification conditions. PLoS ONE 10:e0132242

    Article  PubMed  PubMed Central  Google Scholar 

  • Ningthoujam D, Lynda R, Tamreihao K, Chanu S, Aruna K, Jeenita N (2016) Isolation and characterization of Amycolatopsis sp. strain CRJ2-11 with biocontrol and plant growth-promoting potential from upland rice rhizosphere in Manipur, India. Elyns J Microbes 1:104

    Google Scholar 

  • Niu J, Rang Z, Zhang C, Chen W, Tian F, Yin H, Dai L (2016) The succession pattern of soil microbial communities and its relationship with tobacco bacterial wilt. BMC Microbiol 16:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Notz R, Maurhofer M, Schnider-Keel U, Duffy B, Haas D, Défago G (2001) Biotic factors affecting expression of the 2, 4-diacetylphloroglucinol biosynthesis gene phlA in Pseudomonas fluorescens biocontrol strain CHA0 in the rhizosphere. Phytopathology 91:873–881

    Article  CAS  PubMed  Google Scholar 

  • Ostash B, Gren T, Hrubskyy Y, Tistechok S, Beshley S, Baranov V, Fedorenko V (2014) Cultivable Actinomycetes from rhizosphere of birch (Betula pendula) growing on a coal mine dump in Silets, Ukraine. J Basic Microbiol 54:851–857

    Article  CAS  PubMed  Google Scholar 

  • Patten CL, Glick BR (2002) Role of Pseudomonas putida indoleacetic acid in development of the host plant root system. Appl Environ Microbiol 68:3795–3801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng G, Xiong DS, Li LC et al (2019) Amycolatopsis panacis sp. nov., isolated from Panax notoginseng rhizospheric soil. Int J Syst Evol Microbiol 69:567–571

    Article  CAS  PubMed  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36

    Article  PubMed  PubMed Central  Google Scholar 

  • Pu X, Xie B, Li P, Mao Z, Ling J, Shen H, Zhang J, Huang N, Lin B (2014) Analysis of the defence-related mechanism in cucumber seedlings in relation to root colonization by nonpathogenic Fusarium oxysporum CS-20. FEMS Microbiol Lett 355:142–151

    Article  CAS  PubMed  Google Scholar 

  • Rangarajan S, Saleena LM, Vasudevan P, Nair S (2003) Biological suppression of rice diseases by Pseudomonas spp. under saline soil conditions. Plant Dis 251:73–82

    Google Scholar 

  • Sadeghi A, Karimi E, Dahaji PA, Javid MG, Dalvand Y, Askari H (2012) Plant growth promoting activity of an auxin and siderophore producing isolate of Streptomyces under saline soil conditions. World J Microb Biot 28:1503–1509

    Article  CAS  Google Scholar 

  • Sadeghi A, Koobaz P, Azimi H, Karimi E, Akbari AR (2017) Plant growth promotion and suppression of Phytophthora drechsleri damping-off in cucumber by cellulase-producing Streptomyces. Biocontrol 62:805–819

    Article  CAS  Google Scholar 

  • Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A (2017) Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ Microbiol 19:1407–1424

    Article  PubMed  Google Scholar 

  • Majidi S, Roayaei M, Ghezelbash GR (2011) Carboxymethyl-cellulase and filter-paperase activity of new strains isolated from Persian Gulf. Microbiology 1:8–16

  • Santamaria P (2006) Nitrate in vegetables: toxicity, content, intake and EC regulation. J Sci 86:10–17

    CAS  Google Scholar 

  • Sasse J, Martinoia E, Northen T (2018) Feed your friends: do plant exudates shape the root microbiome? Trends Plant Sci 23:25–41

    Article  CAS  PubMed  Google Scholar 

  • Schlatter D, Kinkel L, Thomashow L, Weller D, Paulitz T (2017) Disease suppressive soils: new insights from the soil microbiome. Phytopathology 107:1284–1297

    Article  PubMed  Google Scholar 

  • Sharma V, Salwan R (2018) Biocontrol potential and applications of Actinobacteria in agriculture. In: Singh BP, Gupta VK, Passari AK (eds) New and future developments in microbial biotechnology and bioengineering, 1st edn. Elsevier, Amsterdam, pp 93–108

    Chapter  Google Scholar 

  • Shoresh M, Yedidia I, Chet I (2005) Involvement of jasmonic acid/ethylene signaling pathway in the systemic resistance induced in cucumber by Trichoderma asperellum T203. Phytopathology 95:76–84

    Article  CAS  PubMed  Google Scholar 

  • Soltani A-A, Khavazi K, Asadi-Rahmani H, Omidvari M, Dahaji PA, Mirhoseyni H (2010) Plant growth promoting characteristics in some Flavobacterium spp. isolated from soils of Iran. Int J Sust Evol Microbiol 2:106

    Google Scholar 

  • Tang S-K, Wang Y, Guan T-W, Lee J-C, Kim C-J, Li W-J (2010) Amycolatopsis halophila sp. nov., a halophilic actinomycete isolated from a salt lake. Int J Syst Evol 60:1073–1078

    Article  CAS  Google Scholar 

  • Tanvir R, Sajid I, Hasnain S (2014) Biotechnological potential of endophytic Actinomycetes associated with Asteraceae plants: isolation, biodiversity and bioactivities. Biotechnol Lett 36:767–773

    Article  CAS  PubMed  Google Scholar 

  • Tchuisseu Tchakounte GV, Berger B, Patz S, Fankem H, Ruppel S (2018) Community structure and plant growth-promoting potential of cultivable bacteria isolated from Cameroon soil. Microbiol Res 214:47–59

    Article  PubMed  Google Scholar 

  • Thawai C (2018) Amycolatopsis rhizosphaerae sp. nov., isolated from rice rhizosphere soil. Int J Syst Evol Microbiol 68:1546–1551

    Article  CAS  PubMed  Google Scholar 

  • Tripathi G, Rawal SK (1998) Simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol Tech 12:629–631

    Article  CAS  Google Scholar 

  • Tokala RK, Strap JL, Jung CM, Crawford DL, Salove MH, Deobald LA, Bailey JF, Morra MJ (2002) Novel plant-microbe rhizosphere interaction involving Streptomyces lydicus WYEC108 and the pea plant (Pisum sativum). Appl Environ Microbiol 68:2161–2171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner TR, Ramakrishnan K, Walshaw J et al (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Viaene T, Langendries S, Beirinckx S, Maes M, Goormachtig S (2016) Streptomyces as a plant's best friend? FEMS Microbiol Ecol 92: fiw119

  • Vurukonda SSKP, Giovanardi D, Stefani EJIjoms, (2018) Plant growth promoting and biocontrol activity of Streptomyces spp. as endophytes. Int J Mol Sci 19:952

    Article  PubMed Central  Google Scholar 

  • Weller DM, Raaijmakers JM, Gardener BB, Thomashow LS (2002) Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopathol 40:309–348

    Article  CAS  PubMed  Google Scholar 

  • Yuan WM, Crawford DL (1995) Characterization of streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Appl Environ Microbiol 61:3119–3128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zaller JG, Köpke U (2004) Effects of traditional and biodynamic farmyard manure amendment on yields, soil chemical, biochemical and biological properties in a long-term field experiment. Biol Fert Soils 40:222–229

    Article  Google Scholar 

  • Zhang S, Xu B, Gan Y (2019) Seed treatment with Trichoderma longibrachiatum T6 promotes wheat seedling growth under NaCl stress through activating the enzymatic and nonenzymatic antioxidant defense systems. Int J Mol Sci 20:3729

    Article  CAS  PubMed Central  Google Scholar 

  • Zhao S, Du CM, Tian CY (2012) Suppression of Fusarium oxysporum and induced resistance of plants involved in the biocontrol of Cucumber Fusarium Wilt by Streptomyces bikiniensis HD-087. World J Microbiol Biotechnol 28:2919–2927

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Agricultural Biotechnology Research Institute of Iran (ABRII), [Grant Number: 14-05-05-011-09454-970581] and Iran National Science Foundation (INSF) [Grant Number: 97008996] for financial support of this Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Sadeghi.

Ethics declarations

Conflict of interest

Authors declare that there exists no conflict of interest among them.

Additional information

Responsible Editor: Luz E. de-Bashan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The culturable Actinomycetes population in the rhizosphere of dicots was higher than monocots

• IAA-like molecules production and cellulase activity were the two dominant traits in P. capsici antagonist Actinomycetes

Amycolatopsis strain 1119 controlled incidence of the P. capsici damping-off by 100%

• Strain 1119 increased fruit yield by 20% in commercial greenhouse Strain 1119 stimulated the plant immune system through both ISR and SAR pathways

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alipour Kafi, S., Karimi, E., Akhlaghi Motlagh, M. et al. Isolation and identification of Amycolatopsis sp. strain 1119 with potential to improve cucumber fruit yield and induce plant defense responses in commercial greenhouse. Plant Soil 468, 125–145 (2021). https://doi.org/10.1007/s11104-021-05097-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-021-05097-3

Keywords

Navigation