Skip to main content
Log in

Complete chloroplast genome of the medicinal plant Evolvulus alsinoides: comparative analysis, identification of mutational hotspots and evolutionary dynamics with species of Solanales

  • Research Article
  • Published:
Physiology and Molecular Biology of Plants Aims and scope Submit manuscript

Abstract

Evolvulus alsinoides, belonging to the family Convolvulaceae, is an important medicinal plant widely used as a nootropic in the Indian traditional medicine system. In the genus Evolvulus, no research on the chloroplast genome has been published. Hence, the present study focuses on annotation, characterization, identification of mutational hotspots, and phylogenetic analysis in the complete chloroplast genome (cp) of E. alsinoides. Genome comparison and evolutionary dynamics were performed with the species of Solanales. The cp genome has 114 genes (80 protein-coding genes, 30 transfer RNA, and 4 ribosomal RNA genes) that were unique with total genome size of 157,015 bp. The cp genome possesses 69 RNA editing sites and 44 simple sequence repeats (SSRs). Predicted SSRs were randomly selected and validated experimentally. Six divergent hotspots such as trnQ-UUG, trnF-GAA, psaI, clpP, ndhF, and ycf1 were discovered from the cp genome. These microsatellites and divergent hot spot sequences of the Taxa ‘Evolvulus’ could be employed as molecular markers for species identification and genetic divergence investigations. The LSC area was found to be more conserved than the SSC and IR region in genome comparison. The IR contraction and expansion studies show that nine genes rpl2, rpl23, ycf1, ycf2, ycf1, ndhF, ndhA, matK, and psbK were present in the IR-LSC and IR-SSC boundaries of the cp genome. Fifty-four protein-coding genes in the cp genome were under negative selection pressure, indicating that they were well conserved and were undergoing purifying selection. The phylogenetic analysis reveals that E. alsinoides is closely related to the genus Cressa with some divergence from the genus Ipomoea. This is the first time the chloroplast genome of the genus Evolvulus has been published. The findings of the present study and chloroplast genome data could be a valuable resource for future studies in population genetics, genetic diversity, and evolutionary relationship of the family Convolvulaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

AA:

Amino Acid

Cp:

Chloroplast

IR:

Inverted repeat

LSC:

Large Single Copy

PCGs:

Protein Coding Genes

RSCU:

Relative Synonymous Codon Usage

SMRT:

Single Molecule Real Time

SSC:

Small Single Copy

SSR:

Simple Sequence Repeat

References

  • Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2

    Article  CAS  PubMed  Google Scholar 

  • Ambika AP, Nair SN (2019) Wound healing activity of plants from the convolvulaceae family. Adv Wound Care 8:28–37

    Article  Google Scholar 

  • Austin DF (1978) The Ipomoea batatas complex-I. Taxonomy. Bull Torrey Bot Club 114–129

  • Austin DF (2008) Author’s personal copy Evolvulus alsinoides (Convolvulaceae): An American herb in the Old World. J Ethnopharmacol 117:185–198. https://doi.org/10.1016/j.jep.2008.01.038

    Article  PubMed  Google Scholar 

  • Beier S, Thiel T, Münch T et al (2017) MISA-web: a web server for microsatellite prediction. Bioinformatics 33:2583–2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Biémont C, Vieira C (2006) Genetics: junk DNA as an evolutionary force. Nature 443:521–524. https://doi.org/10.1038/443521a

    Article  CAS  PubMed  Google Scholar 

  • Bock R (2000) Sense from nonsense: how the genetic information of chloroplasts is altered by RNA editing [RNA processing, plastid transformation, evolution]. Biochim

  • Bryan GJ, McNicoll J, Ramsay G et al (1999) Polymorphic simple sequence repeat markers in chloroplast genomes of Solanaceous plants. Theor Appl Genet 99:859–867

    Article  CAS  Google Scholar 

  • Chan PP, Lowe TM (2019) tRNAscan-SE: searching for tRNA genes in genomic sequences. In: Gene prediction. Springer, pp 1–14

  • Chen J, Hao Z, Xu H et al (2015) The complete chloroplast genome sequence of the relict woody plant Metasequoia glyptostroboides Hu et Cheng. Front Plant Sci 6:447

    PubMed  PubMed Central  Google Scholar 

  • Christin P-A, Osborne CP, Sage RF et al (2011) C4 eudicots are not younger than C4 monocots. J Exp Bot 62:3171–3181

    Article  CAS  PubMed  Google Scholar 

  • De-la-Cruz IM, Núñez-Farfán J (2020) The complete chloroplast genomes of two Mexican plants of the annual herb Datura stramonium (Solanaceae). Mitochondrial DNA Part B 5:2823–2825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delannoy E, Fujii S, Colas des Francs-Small C, et al (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077–2086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong W, Liu J, Yu J et al (2012) Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7:e35071

  • Dong W, Xu C, Cheng T et al (2013) Sequencing angiosperm plastid genomes made easy: a complete set of universal primers and a case study on the phylogeny of Saxifragales. Genome Biol Evol 5:989–997

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Du P, Jia L, Li Y (2009) CURE-Chloroplast: a chloroplast C-to-U RNA editing predictor for seed plants. BMC Bioinformatics 10:135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duruvasula S, Mulpuri S, Kandasamy U (2019) Mapping of plastid RNA editing sites of Helianthus and identification of differential editing in fungal infected plants. Curr Plant Biol 18:100109

  • Ebert D, Peakall ROD (2009) Chloroplast simple sequence repeats (cpSSRs): technical resources and recommendations for expanding cpSSR discovery and applications to a wide array of plant species. Mol Ecol Resour 9:673–690

    Article  CAS  PubMed  Google Scholar 

  • Erixon P, Oxelman B (2008) Reticulate or tree-like chloroplast DNA evolution in Sileneae (Caryophyllaceae)? Mol Phylogenet Evol 48:313–325

    Article  CAS  PubMed  Google Scholar 

  • Ermolaeva MD (2001) Synonymous codon usage in bacteria. Curr Issues Mol Biol 3:91–97

    CAS  PubMed  Google Scholar 

  • Eserman LA, Tiley GP, Jarret RL et al (2014) Phylogenetics and diversification of morning glories (tribe Ipomoeeae, Convolvulaceae) based on whole plastome sequences. Am J Bot 101:92–103

    Article  PubMed  Google Scholar 

  • Fiz-Palacios O, Schneider H, Heinrichs J, Savolainen V (2011) Diversification of land plants: insights from a family-level phylogenetic analysis. BMC Evol Biol 11:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Funk HT, Berg S, Krupinska K et al (2007) Complete DNA sequences of the plastid genomes of two parasitic flowering plant species, Cuscuta reflexa and Cuscuta gronovii. BMC Plant Biol 7:45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackl T, Hedrich R, Schultz J, Förster F (2014) proovread: large-scale high-accuracy PacBio correction through iterative short read consensus. Bioinformatics 30:3004–3011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hansen DR, Dastidar SG, Cai Z et al (2007) Phylogenetic and evolutionary implications of complete chloroplast genome sequences of four early-diverging angiosperms: Buxus (Buxaceae), Chloranthus (Chloranthaceae), Dioscorea (Dioscoreaceae), and Illicium (Schisandraceae). Mol Phylogenet Evol 45:547–563

    Article  CAS  PubMed  Google Scholar 

  • Healey A, Furtado A, Cooper T, Henry RJ (2014) Protocol: a simple method for extracting next-generation sequencing quality genomic DNA from recalcitrant plant species. Plant Methods 10:21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Henry RJ, Rice N, Edwards M, Nock CJ (2014) Next-generation technologies to determine plastid genome sequences. In: Chloroplast biotechnology. Springer, pp 39–46

  • Huang H, Shi C, Liu Y et al (2014) Thirteen Camelliachloroplast genome sequences determined by high-throughput sequencing: genome structure and phylogenetic relationships. BMC Evol Biol 14:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2005) MrBayes: a program for the Bayesian inference of phylogeny, v. 3.1. 2. Rochester New York

  • Ivanova Z, Sablok G, Daskalova E et al (2017) Chloroplast genome analysis of resurrection tertiary relict Haberlea rhodopensis highlights genes important for desiccation stress response. Front Plant Sci 8:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen RK, Cai Z, Raubeson LA et al (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci 104:19369–19374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones A, Kang J (2015) Development of leaf lobing and vein pattern architecture in the Genus Ipomoea (morning glory). Int J Plant Sci 176:820–831

    Article  Google Scholar 

  • Kaila T, Chaduvla PK, Saxena S et al (2016) Chloroplast genome sequence of Pigeonpea (Cajanus cajan (L.) Millspaugh) and Cajanus scarabaeoides (L.) Thouars: genome organization and comparison with other legumes. Front Plant Sci 7:1847

  • Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khakhlova O, Bock R (2006) Elimination of deleterious mutations in plastid genomes by gene conversion. Plant J 46:85–94

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Lee S-C, Lee J et al (2015) Complete chloroplast and ribosomal sequences for 30 accessions elucidate evolution of Oryza AA genome species. Sci Rep 5:15655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M (1989) The neutral theory of molecular evolution and the world view of the neutralists. Genome 31:24–31

    Article  CAS  PubMed  Google Scholar 

  • Koren S, Walenz BP, Berlin K et al (2017) Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res 27:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korotkova N, Nauheimer L, Ter-Voskanyan H et al (2014) Variability among the most rapidly evolving plastid genomic regions is lineage-specific: implications of pairwise genome comparisons in Pyrus (Rosaceae) and other angiosperms for marker choice. PLoS One 9:e112998

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Suleski M, Hedges SB (2017) TimeTree: a resource for timelines, timetrees, and divergence times. Mol Biol Evol 34:1812–1819

    Article  CAS  PubMed  Google Scholar 

  • Kurtz S, Choudhuri JV, Ohlebusch E et al (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res 29:4633–4642

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. https://doi.org/10.1038/nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H (2018) Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li WLS, Drummond AJ (2012) Model averaging and Bayes factor calculation of relaxed molecular clocks in Bayesian phylogenetics. Mol Biol Evol 29:751–761

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Huo N, Dong L et al (2013) Complete chloroplast genome sequences of Mongolia medicine Artemisia frigida and phylogenetic relationships with other plants. PLoS One 8:e57533

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54–W57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madhavan V, Yoganarasimhan N, Gurudeva MR (2008) Pharmacognostical studies on Sankhapushpi (Convolvulus microphyllus Sieb. ex Spreng. and Evolvulus alsinoides (L.) L

  • Maier RM, Neckermann K, Igloi GL, Kössel H (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J Mol Biol 251:614–628

    Article  CAS  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. Embnet J 17:10–12

    Article  Google Scholar 

  • Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci 104:19363–19368

    Article  PubMed  PubMed Central  Google Scholar 

  • Nie X, Lv S, Zhang Y et al (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS One 7:e36869

  • Park I, Yang S, Kim WJ et al (2018) The complete chloroplast genomes of six Ipomoea species and indel marker development for the discrimination of authentic Pharbitidis Semen (Seeds of I. nil or I. purpurea). Front Plant Sci 9:965

  • Park I, Yang S, Kim WJ et al (2019) Sequencing and comparative analysis of the chloroplast genome of Angelica polymorpha and the development of a novel indel marker for species identification. Molecules 24:1038

    Article  CAS  PubMed Central  Google Scholar 

  • Powell W, Morgante M, McDevitt R et al (1995) Polymorphic simple sequence repeat regions in chloroplast genomes: applications to the population genetics of pines. Proc Natl Acad Sci 92:7759–7763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Priya T (2017) Antimicrobial activity of Evovulus Alisinoids (L) extract with different organic solvents in pathogenic bacteria and fungal species

  • Qian J, Song J, Gao H, et al (2013) The complete chloroplast genome sequence of the medicinal plant Salvia miltiorrhiza. PLoS One 8:e57607

  • Qingpo L, Qingzhong X (2004) Codon usage in the chloroplast genome of rice (Oryza sativa L. ssp. japonica). Zuo Wu Xue Bao 30:1220–1224

    Google Scholar 

  • Raman G, Park S (2016) The complete chloroplast genome sequence of Ampelopsis: gene organization, comparative analysis, and phylogenetic relationships to other angiosperms. Front Plant Sci 7:341

    Article  PubMed  PubMed Central  Google Scholar 

  • Raubeson LA, Peery R, Chumley TW et al (2007) Comparative chloroplast genomics: analyses including new sequences from the angiosperms Nuphar advena and Ranunculus macranthus. BMC Genomics 8:174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ravi V, Khurana JP, Tyagi AK, Khurana P (2008) An update on chloroplast genomes. Plant Syst Evol 271:101–122

    Article  CAS  Google Scholar 

  • Rozas J, Sánchez-DelBarrio JC, Messeguer X, Rozas R (2003) DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19:2496–2497

    Article  CAS  PubMed  Google Scholar 

  • Saina JK, Gichira AW, Li Z-Z et al (2018) The complete chloroplast genome sequence of Dodonaea viscosa: comparative and phylogenetic analyses. Genetica 146:101–113

    Article  CAS  PubMed  Google Scholar 

  • Särkinen T, George M (2013) Predicting plastid marker variation: can complete plastid genomes from closely related species help? PLoS One 8:e82266

  • Sethiya NK, Trivedi A, Patel MB, Mishra SH (2010) Comparative pharmacognostical investigation on four ethanobotanicals traditionally used as Shankhpushpi in India. J Adv Pharm Technol Res. https://doi.org/10.4103/0110-5558.76437

    Article  PubMed  PubMed Central  Google Scholar 

  • Sethiya NK, Nahata A, Singh PK, Mishra SH (2019) Neuropharmacological evaluation on four traditional herbs used as nervine tonic and commonly available as Shankhpushpi in India. J Ayurveda Integr Med 10:25–31

    Article  PubMed  Google Scholar 

  • Sharp PM, Cowe E (1991) Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7:657–678

    Article  CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288

    Article  CAS  PubMed  Google Scholar 

  • Singh A (2008) Review of Ethnomedicinal Uses and Pharmacology of Evolvulus alsinoides Linn. Ethnobot Leafl 2008:100

    Google Scholar 

  • Siraj MB, Khan AA, Jahangir U (2019) Therapeutic potential of Evolvulus alsinoides. J Drug Deliv Ther 9:696–701

    Article  CAS  Google Scholar 

  • Sloan DB, Triant DA, Forrester NJ et al (2014) A recurring syndrome of accelerated plastid genome evolution in the angiosperm tribe Sileneae (Caryophyllaceae). Mol Phylogenet Evol 72:82–89

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Dong W, Liu B et al (2015) Comparative analysis of complete chloroplast genome sequences of two tropical trees Machilus yunnanensis and Machilus balansae in the family Lauraceae. Front Plant Sci 6:662

    PubMed  PubMed Central  Google Scholar 

  • Sugiura M (1992) The chloroplast genome. Plant Mol Biol 19:149–168

    Article  CAS  PubMed  Google Scholar 

  • Sugiura M (2005) History of chloroplast genomics. In: Discoveries in photosynthesis. Springer, pp 1057–1063

  • Supriya R, Priyadarshan PM (2019) Genomic technologies for Hevea breeding. In: Advances in genetics. Elsevier, pp 1–73

  • Tillich M, Lehwark P, Pellizzer T et al (2017) GeSeq–versatile and accurate annotation of organelle genomes. Nucleic Acids Res 45:W6–W11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Untergasser A, Cutcutache I, Koressaar T et al (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115

  • Uthaman A, Nair SN (2017) A review on ten sacred flowers in Kerala: Dasapushpam. Res J Pharm Technol 10:1555–1562

    Article  Google Scholar 

  • Wang S, Shi C, Gao L-Z (2013) Plastid genome sequence of a wild woody oil species, Prinsepia utilis, provides insights into evolutionary and mutational patterns of Rosaceae chloroplast genomes. PLoS One 8:e73946

  • Wicke S, Schneeweiss GM, Depamphilis CW et al (2011) The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. Plant Mol Biol 76:273–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wicke S, Müller KF, de Pamphilis CW et al (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711–3725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilgenbusch JC, Swofford D (2003) Inferring evolutionary trees with PAUP. Curr Protoc Bioinforma 4–6

  • Wong GK-S, Wang J, Tao L et al (2002) Compositional gradients in Gramineae genes. Genome Res 12:851–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu F-H, Chan M-T, Liao D-C et al (2010) Complete chloroplast genome of Oncidium Gower Ramsey and evaluation of molecular markers for identification and breeding in Oncidiinae. BMC Plant Biol 10:68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu Q, Xiong G, Li P et al (2012) Analysis of complete nucleotide sequences of 12 Gossypium chloroplast genomes: origin and evolution of allotetraploids. PLoS One 7:e37128

  • Xu C, Dong W, Li W et al (2017) Comparative analysis of six Lagerstroemia complete chloroplast genomes. Front Plant Sci 8:15

    PubMed  PubMed Central  Google Scholar 

  • Yang Y, Zhou T, Duan D et al (2016) Comparative analysis of the complete chloroplast genomes of five Quercus species. Front Plant Sci 7:959

    PubMed  PubMed Central  Google Scholar 

  • Yoder AD, Yang Z (2000) Estimation of primate speciation dates using local molecular clocks. Mol Biol Evol 17:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Yukawa M, Tsudzuki T, Sugiura M (2006) The chloroplast genome of Nicotiana sylvestris and Nicotiana tomentosiformis: complete sequencing confirms that the Nicotiana sylvestris progenitor is the maternal genome donor of Nicotiana tabacum. Mol Genet Genomics 275:367–373

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y-J, Ma P-F, Li D-Z (2011) High-throughput sequencing of six bamboo chloroplast genomes: phylogenetic implications for temperate woody bamboos (Poaceae: Bambusoideae). PLoS One 6:e20596

  • Zhao C, Chen S, Sun K et al (2019) Sequencing and characterization the complete chloroplast genome of the potato, Solanum tuberosum L. Mitochondrial DNA Part B 4:953–954

    Article  Google Scholar 

  • Zhou T, Chen C, Wei Y et al (2016) Comparative transcriptome and chloroplast genome analyses of two related Dipteronia species. Front Plant Sci 7:1512

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Our sincere gratitude to Prof. P. R. Sudhakaran and Prof. Oommen V Oommen for their valuable suggestions. The support provided by Mr. Deelip Kumar R., Campus Computing Facility (CCF), University of Kerala is gratefully acknowledged. We are grateful to the Campus Computing Facility (CCF) at the Central Laboratory for Instrumentation and Facilitation, University of Kerala for providing the HPC/GPU cluster facility to carry out this research work. We thank AgriGenome Labs, Cochin, Kerala, India, for performing Illumina sequencing.

Funding

We acknowledge the funds received from the University of Kerala (Plan fund) and also the facility under SIUCEB project, DBT –BIF centre, MHRD-FAST (AiCADD center) in the Department of Computational Biology and Bioinformatics, University of Kerala.

Author information

Authors and Affiliations

Authors

Contributions

SPR and ASN designed the study. SPR, VCB, SV, AS, VCL, VR, AJ and AS conducted the experiments and performed the analysis. NF conducted the experimental validation of SSR. SPR coordinated the project and wrote the manuscript.

Corresponding author

Correspondence to P. R. Shidhi.

Ethics declarations

Conflict of interest

No conflict of interest declared by authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shidhi, P.R., Nadiya, F., Biju, V.C. et al. Complete chloroplast genome of the medicinal plant Evolvulus alsinoides: comparative analysis, identification of mutational hotspots and evolutionary dynamics with species of Solanales. Physiol Mol Biol Plants 27, 1867–1884 (2021). https://doi.org/10.1007/s12298-021-01051-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12298-021-01051-w

Keywords

Navigation