Skip to main content
Log in

Regulatory roles of nucleolus organizer region-derived long non-coding RNAs

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The nucleolus is the largest sub-nuclear domain, serving primarily as the place for ribosome biogenesis. A delicately regulated function of the nucleolus is vital to the cell not only for maintaining proper protein synthesis but is also tightly associated with responses to different types of cellular stresses. Recently, several long non-coding RNAs (lncRNAs) were found to be part of the regulatory network that modulate nucleolar functions. Several of these lncRNAs are encoded in the ribosomal DNA (rDNA) repeats or are transcribed from the genomic regions that are located near the nucleolus organizer regions (NORs). In this review, we first discuss the current understanding of the sequence of the NORs and variations between different NORs. We then focus on the NOR-derived lncRNAs in mammalian cells and their functions in rRNA transcription and the organization of nucleolar structure under different cellular conditions. The identification of these lncRNAs reveals great potential of the NORs in harboring novel genes involved in the regulation of nucleolar functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abraham KJ, Khosraviani N, Chan JNY, Gorthi A, Samman A, Zhao DY, Wang M, Bokros M, Vidya E, Ostrowski LA et al (2020) Nucleolar RNA polymerase II drives ribosome biogenesis. Nature 585:298–302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal S, Ganley ARD (2018) The conservation landscape of the human ribosomal RNA gene repeats. PLoS ONE 13:e0207531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arnheim N, Krystal M, Schmickel R, Wilson G, Ryder O, Zimmer E (1980) Molecular evidence for genetic exchanges among ribosomal genes on nonhomologous chromosomes in man and apes. Proc Natl Acad Sci USA 77:7323–7327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157

    Article  CAS  PubMed  Google Scholar 

  • Audas TE, Audas DE, Jacob MD, Ho JJ, Khacho M, Wang M, Perera JK, Gardiner C, Bennett CA, Head T et al (2016) Adaptation to stressors by systemic protein amyloidogenesis. Dev Cell 39:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bersaglieri C, Santoro R (2019) Genome organization in and around the nucleolus. Cells 8:579

    Article  CAS  PubMed Central  Google Scholar 

  • Bierhoff H, Schmitz K, Maass F, Ye J, Grummt I (2010) Noncoding transcripts in sense and antisense orientation regulate the epigenetic state of ribosomal RNA genes. Cold Spring Harb Symp Quant Biol 75:357–364

    Article  CAS  PubMed  Google Scholar 

  • Bierhoff H, Dammert MA, Brocks D, Dambacher S, Schotta G, Grummt I (2014) Quiescence-induced LncRNAs trigger H4K20 trimethylation and transcriptional silencing. Mol Cell 54:675–682

    Article  CAS  PubMed  Google Scholar 

  • Boisvert FM, van Koningsbruggen S, Navascues J, Lamond AI (2007) The multifunctional nucleolus. Nat Rev Mol Cell Biol 8:574–585

    Article  CAS  PubMed  Google Scholar 

  • Boulon S, Westman BJ, Hutten S, Boisvert FM, Lamond AI (2010) The nucleolus under stress. Mol Cell 40:216–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bridges MC, Daulagala AC, Kourtidis A (2021) LNCcation: lncRNA localization and function. J Cell Biol. https://doi.org/10.1083/jcb.202009045

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassidy BG, Yang-Yen HF, Rothblum LI (1987) Additional RNA polymerase I initiation site within the nontranscribed spacer region of the rat rRNA gene. Mol Cell Biol 7:2388–2396

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen LL (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41:761–772

    Article  CAS  PubMed  Google Scholar 

  • Chen YC, Eisner JD, Kattar MM, Rassoulian-Barrett SL, Lafe K, Bui U, Limaye AP, Cookson BT (2001) Polymorphic internal transcribed spacer region 1 DNA sequences identify medically important yeasts. J Clin Microbiol 39:4042–4051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17:756–770

    Article  CAS  PubMed  Google Scholar 

  • Floutsakou I, Agrawal S, Nguyen TT, Seoighe C, Ganley AR, McStay B (2013) The shared genomic architecture of human nucleolar organizer regions. Genome Res 23:2003–2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135

    Article  CAS  PubMed  Google Scholar 

  • Frottin F, Schueder F, Tiwary S, Gupta R, Korner R, Schlichthaerle T, Cox J, Jungmann R, Hartl FU, Hipp MS (2019) The nucleolus functions as a phase-separated protein quality control compartment. Science 365:342–347

    Article  CAS  PubMed  Google Scholar 

  • Fujita SI, Senda Y, Nakaguchi S, Hashimoto T (2001) Multiplex PCR using internal transcribed spacer 1 and 2 regions for rapid detection and identification of yeast strains. J Clin Microbiol 39:3617–3622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gil N, Ulitsky I (2020) Regulation of gene expression by cis-acting long non-coding RNAs. Nat Rev Genet 21:102–117

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Sylvester JE (1995) Complete sequence of the 43-kb human ribosomal DNA repeat: analysis of the intergenic spacer. Genomics 27:320–328

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez IL, Sylvester JE (1997) Beyond ribosomal DNA: on towards the telomere. Chromosoma 105:431–437

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi G, Di Nocera PP (1988) Multiple repeated units in Drosophila melanogaster ribosomal DNA spacer stimulate rRNA precursor transcription. Proc Natl Acad Sci USA 85:5502–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grummt I, Langst G (2013) Epigenetic control of RNA polymerase I transcription in mammalian cells. Biochim Biophys Acta 1829:393–404

    Article  CAS  PubMed  Google Scholar 

  • Grummt I, Pikaard CS (2003) Epigenetic silencing of RNA polymerase I transcription. Nat Rev Mol Cell Biol 4:641–649

    Article  CAS  PubMed  Google Scholar 

  • Guetg C, Lienemann P, Sirri V, Grummt I, Hernandez-Verdun D, Hottiger MO, Fussenegger M, Santoro R (2010) The NoRC complex mediates the heterochromatin formation and stability of silent rRNA genes and centromeric repeats. EMBO J 29:2135–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guetg C, Scheifele F, Rosenthal F, Hottiger MO, Santoro R (2012) Inheritance of silent rDNA chromatin is mediated by PARP1 via noncoding RNA. Mol Cell 45:790–800

    Article  CAS  PubMed  Google Scholar 

  • Guh CY, Hsieh YH, Chu HP (2020) Functions and properties of nuclear lncRNAs-from systematically mapping the interactomes of lncRNAs. J Biomed Sci 27:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Q, Shi X, Wang X (2021) RNA and liquid-liquid phase separation. Noncoding RNA Res 6:92–99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iarovaia OV, Minina EP, Sheval EV, Onichtchouk D, Dokudovskaya S, Razin SV, Vassetzky YS (2019) Nucleolus: a central hub for nuclear functions. Trends Cell Biol 29:647–659

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Dilthey AT, Nagaraja R, Lee HS, Koren S, Dudekula D, Wood Iii WH, Piao Y, Ogurtsov AY, Utani K et al (2018) Variation in human chromosome 21 ribosomal RNA genes characterized by TAR cloning and long-read sequencing. Nucleic Acids Res 46:6712–6725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhn A, Grummt I (1987) A novel promoter in the mouse rDNA spacer is active in vivo and in vitro. EMBO J 6:3487–3492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuo BA, Gonzalez IL, Gillespie DA, Sylvester JE (1996) Human ribosomal RNA variants from a single individual and their expression in different tissues. Nucleic Acids Res 24:4817–4824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurylo CM, Parks MM, Juette MF, Zinshteyn B, Altman RB, Thibado JK, Vincent CT, Blanchard SC (2018) Endogenous rRNA sequence variation can regulate stress response gene expression and phenotype. Cell Rep 25:236–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Labhart P, Reeder RH (1984) Enhancer-like properties of the 60/81 bp elements in the ribosomal gene spacer of Xenopus laevis. Cell 37:285–289

    Article  CAS  PubMed  Google Scholar 

  • Lai AY, Wade PA (2011) Cancer biology and NuRD: a multifaceted chromatin remodelling complex. Nat Rev Cancer 11:588–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leone S, Bar D, Slabber CF, Dalcher D, Santoro R (2017) The RNA helicase DHX9 establishes nucleolar heterochromatin, and this activity is required for embryonic stem cell differentiation. EMBO Rep 18:1248–1262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Zhang J, Wang M, Li X, Gong H, Tang H, Chen L, Wan L, Liu Q (2018) Activity dependent LoNA regulates translation by coordinating rRNA transcription and methylation. Nat Commun 9:1726

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li J, Santoro R, Koberna K, Grummt I (2005) The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 24:120–127

    Article  PubMed  CAS  Google Scholar 

  • Li J, Langst G, Grummt I (2006) NoRC-dependent nucleosome positioning silences rRNA genes. EMBO J 25:5735–5741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locati MD, Pagano JF, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Zhu K, Spaink HP, Girard G, Rauwerda H et al (2017a) Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons. RNA 23:446–456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locati MD, Pagano JFB, Girard G, Ensink WA, van Olst M, van Leeuwen S, Nehrdich U, Spaink HP, Rauwerda H, Jonker MJ et al (2017b) Expression of distinct maternal and somatic 5.8S, 18S, and 28S rRNA types during zebrafish development. RNA 23:1188–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald WA, Mann MRW (2020) Long noncoding RNA functionality in imprinted domain regulation. PLoS Genet 16:e1008930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manelyte L, Strohner R, Gross T, Langst G (2014) Chromatin targeting signals, nucleosome positioning mechanism and non-coding RNA-mediated regulation of the chromatin remodeling complex NoRC. PLoS Genet 10:e1004157

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayer C, Schmitz KM, Li J, Grummt I, Santoro R (2006) Intergenic transcripts regulate the epigenetic state of rRNA genes. Mol Cell 22:351–361

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Neubert M, Grummt I (2008) The structure of NoRC-associated RNA is crucial for targeting the chromatin remodelling complex NoRC to the nucleolus. EMBO Rep 9:774–780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McStay B (2016) Nucleolar organizer regions: genomic “dark matter” requiring illumination. Genes Dev 30:1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan GT, Reeder RH, Bakken AH (1983) Transcription in cloned spacers of Xenopus laevis ribosomal DNA. Proc Natl Acad Sci USA 80:6490–6494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nurk S, Koren S, Rhie A, Rautiainen M, Bzikadze AV, Mikheenko A, Vollger MR, Altemose N, Uralsky L, Gershman A et al (2021) The complete sequence of a human genome. bioRxiv. https://doi.org/10.1101/2021.05.26.445798

    Article  Google Scholar 

  • Paalman MH, Henderson SL, Sollner-Webb B (1995) Stimulation of the mouse rRNA gene promoter by a distal spacer promoter. Mol Cell Biol 15:4648–4656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parks MM, Kurylo CM, Dass RA, Bojmar L, Lyden D, Vincent CT, Blanchard SC (2018) Variant ribosomal RNA alleles are conserved and exhibit tissue-specific expression. Sci Adv 4:eaao0665

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Putnam CD, Pikaard CS (1992) Cooperative binding of the Xenopus RNA polymerase I transcription factor xUBF to repetitive ribosomal gene enhancers. Mol Cell Biol 12:4970–4980

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinodoz SA, Ollikainen N, Tabak B, Palla A, Schmidt JM, Detmar E, Lai MM, Shishkin AA, Bhat P, Takei Y et al (2018) Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174:744–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reeder RH, Brown DD, Wellauer PK, Dawid IB (1976) Patterns of ribosomal DNA spacer lengths are inherited. J Mol Biol 105:507–516

    Article  CAS  PubMed  Google Scholar 

  • Robicheau BM, Susko E, Harrigan AM, Snyder M (2017) Ribosomal RNA genes contribute to the formation of Pseudogenes and Junk DNA in the human genome. Genome Biol Evol 9:380–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai K, Ohta T, Minoshima S, Kudoh J, Wang Y, de Jong PJ, Shimizu N (1995) Human ribosomal RNA gene cluster: identification of the proximal end containing a novel tandem repeat sequence. Genomics 26:521–526

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Li J, Grummt I (2002) The nucleolar remodeling complex NoRC mediates heterochromatin formation and silencing of ribosomal gene transcription. Nat Genet 32:393–396

    Article  CAS  PubMed  Google Scholar 

  • Santoro R, Schmitz KM, Sandoval J, Grummt I (2010) Intergenic transcripts originating from a subclass of ribosomal DNA repeats silence ribosomal RNA genes in trans. EMBO Rep 11:52–58

    Article  CAS  PubMed  Google Scholar 

  • Savic N, Bar D, Leone S, Frommel SC, Weber FA, Vollenweider E, Ferrari E, Ziegler U, Kaech A, Shakhova O et al (2014) lncRNA maturation to initiate heterochromatin formation in the nucleolus is required for exit from pluripotency in ESCs. Cell Stem Cell 15:720–734

    Article  CAS  PubMed  Google Scholar 

  • Schmitz KM, Mayer C, Postepska A, Grummt I (2010) Interaction of noncoding RNA with the rDNA promoter mediates recruitment of DNMT3b and silencing of rRNA genes. Genes Dev 24:2264–2269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, Chen W, Fungal Barcoding C (2012) Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc Natl Acad Sci USA 109:6241–6246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharifi S, Bierhoff H (2018) Regulation of RNA polymerase I transcription in development, disease, and aging. Annu Rev Biochem 87:51–73

    Article  CAS  PubMed  Google Scholar 

  • She X, Horvath JE, Jiang Z, Liu G, Furey TS, Christ L, Clark R, Graves T, Gulden CL, Alkan C et al (2004) The structure and evolution of centromeric transition regions within the human genome. Nature 430:857–864

    Article  CAS  PubMed  Google Scholar 

  • Shiao YH, Lupascu ST, Gu YD, Kasprzak W, Hwang CJ, Fields JR, Leighty RM, Quinones O, Shapiro BA, Alvord WG et al (2009) An intergenic non-coding rRNA correlated with expression of the rRNA and frequency of an rRNA single nucleotide polymorphism in lung cancer cells. PLoS ONE 4:e7505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sinclair JH, Brown DD (1971) Retention of common nucleotide sequences in the ribosomal deoxyribonucleic acid of eukaryotes and some of their physical characteristics. Biochemistry 10:2761–2769

    Article  CAS  PubMed  Google Scholar 

  • Smirnov E, Cmarko D, Mazel T, Hornacek M, Raska I (2016) Nucleolar DNA: the host and the guests. Histochem Cell Biol 145:359–372

    Article  CAS  PubMed  Google Scholar 

  • Song W, Joo M, Yeom JH, Shin E, Lee M, Choi HK, Hwang J, Kim YI, Seo R, Lee JE et al (2019) Divergent rRNAs as regulators of gene expression at the ribosome level. Nat Microbiol 4:515–526

    Article  CAS  PubMed  Google Scholar 

  • Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22:96–118

    Article  CAS  PubMed  Google Scholar 

  • Strohner R, Nemeth A, Jansa P, Hofmann-Rohrer U, Santoro R, Langst G, Grummt I (2001) NoRC–a novel member of mammalian ISWI-containing chromatin remodeling machines. EMBO J 20:4892–4900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Q, Hao Q, Prasanth KV (2018) Nuclear long noncoding RNAs: key regulators of gene expression. Trends Genet 34:142–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomson DW, Dinger ME (2016) Endogenous microRNA sponges: evidence and controversy. Nat Rev Genet 17:272–283

    Article  CAS  PubMed  Google Scholar 

  • Todd MA, Huh MS, Picketts DJ (2016) The sub-nucleolar localization of PHF6 defines its role in rDNA transcription and early processing events. Eur J Hum Genet 24:1453–1459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torchy MP, Hamiche A, Klaholz BP (2015) Structure and function insights into the NuRD chromatin remodeling complex. Cell Mol Life Sci 72:2491–2507

    Article  CAS  PubMed  Google Scholar 

  • Tseng H, Chou W, Wang J, Zhang X, Zhang S, Schultz RM (2008) Mouse ribosomal RNA genes contain multiple differentially regulated variants. PLoS ONE 3:e1843

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Sluis M, McStay B (2019) Nucleolar DNA double-strand break responses underpinning rDNA genomic stability. Trends Genet 35:743–753

    Article  PubMed  CAS  Google Scholar 

  • van Sluis M, Gailin MO, McCarter JGW, Mangan H, Grob A, McStay B (2019) Human NORs, comprising rDNA arrays and functionally conserved distal elements, are located within dynamic chromosomal regions. Genes Dev 33:1688–1701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang M, Tao X, Jacob MD, Bennett CA, Ho JJD, Gonzalgo ML, Audas TE, Lee S (2018) Stress-induced low complexity RNA activates physiological amyloidogenesis. Cell Rep 24:1713–1721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Li K, Huang W (2020) Long non-coding RNA NEAT1-centric gene regulation. Cell Mol Life Sci 77:3769–3779

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Hu X, Song W, Xu H, Xiao Z, Huang R, Bai Q, Zhang F, Chen Y, Liu Y et al (2021) Mutual dependency between lncRNA LETN and protein NPM1 in controlling the nucleolar structure and functions sustaining cell proliferation. Cell Res 31:664–683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegnez M, Monier R, Denis H (1972) Sequence heterogeneity of 5 S RNA in Xenopus laevis. FEBS Lett 25:13–20

    Article  CAS  PubMed  Google Scholar 

  • Xie W, Ling T, Zhou Y, Feng W, Zhu Q, Stunnenberg HG, Grummt I, Tao W (2012) The chromatin remodeling complex NuRD establishes the poised state of rRNA genes characterized by bivalent histone modifications and altered nucleosome positions. Proc Natl Acad Sci USA 109:8161–8166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing YH, Yao RW, Zhang Y, Guo CJ, Jiang S, Xu G, Dong R, Yang L, Chen LL (2017) SLERT regulates DDX21 rings associated with pol I transcription. Cell 169:664–678

    Article  CAS  PubMed  Google Scholar 

  • Yao RW, Wang Y, Chen LL (2019) Cellular functions of long noncoding RNAs. Nat Cell Biol 21:542–551

    Article  CAS  PubMed  Google Scholar 

  • Yap K, Mukhina S, Zhang G, Tan JSC, Ong HS, Makeyev EV (2018) A short tandem repeat-enriched RNA assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell 72:525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zentner GE, Saiakhova A, Manaenkov P, Adams MD, Scacheri PC (2011) Integrative genomic analysis of human ribosomal DNA. Nucleic Acids Res 39:4949–4960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Dammert MA, Grummt I, Bierhoff H (2016a) lncRNA-induced nucleosome repositioning reinforces transcriptional repression of rRNA genes upon hypotonic stress. Cell Rep 14:1876–1882

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Dammert MA, Hoppe S, Bierhoff H, Grummt I (2016b) Heat shock represses rRNA synthesis by inactivation of TIF-IA and lncRNA-dependent changes in nucleosome positioning. Nucleic Acids Res 44:8144–8152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Z, Senturk N, Song C, Grummt I (2018) lncRNA PAPAS tethered to the rDNA enhancer recruits hypophosphorylated CHD4/NuRD to repress rRNA synthesis at elevated temperatures. Genes Dev 32:836–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Grummt I (2005) The PHD finger/bromodomain of NoRC interacts with acetylated histone H4K16 and is sufficient for rDNA silencing. Curr Biol 15:1434–1438

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Santoro R, Grummt I (2002) The chromatin remodeling complex NoRC targets HDAC1 to the ribosomal gene promoter and represses RNA polymerase I transcription. EMBO J 21:4632–4640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. You Jin Song from Prasanth’s laboratory for her valuable comments. The research in KVP laboratory is supported by funding from National Institute of Health [R01GM132458 and R21AG065748], National Science Foundation [MCB1723008], and Cancer center at Illinois seed grant and Prairie Dragon Paddlers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kannanganattu V. Prasanth.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Q., Prasanth, K.V. Regulatory roles of nucleolus organizer region-derived long non-coding RNAs. Mamm Genome 33, 402–411 (2022). https://doi.org/10.1007/s00335-021-09906-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-021-09906-z

Navigation