Skip to main content
Log in

Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear Space-Fractional Convection–Diffusion–Reaction Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this article, our goal is to establish fast and efficient numerical methods for nonlinear space-fractional convection–diffusion–reaction (CDR) equations in the 1, 2, and 3 dimensions. For the spatial discretization of the CDR equations, the weighted essentially non-oscillatory (WENO) scheme is used to approximate the convection term, and the fractional centered difference formula is applied to deal with the diffusion term. As a result, a nonlinear system of ordinary differential equations (ODEs) is derived. Since implicit integration factor (IIF) methods are a class of time-stepping schemes with good robustness and stability, the second order IIF–WENO scheme on non-uniform meshes in Jiang and Zhang (J Comput Phys 253:368–388, 2013) is applied to solve the nonlinear ODEs system. In order to obtain an efficient implementation of the IIF–WENO scheme, we propose an adaptive restarting Krylov subspace method to compute the action of matrix exponentials arising in IIF–WENO. Numerical examples are presented to confirm the validity of the IIF–WENO scheme, and to verify that the proposed fast solution algorithm is extremely attractive in terms of computational complexity and memory storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jiang, T., Zhang, Y.-T.: Krylov implicit integration factor WENO methods for semilinear and fully nonlinear advection-diffusion-reaction equations. J. Comput. Phys. 253, 368–388 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Yariv, E., Ben-Dov, G., Dorfman, K.D.: Polymerase chain reaction in natural convection systems: a convection-diffusion-reaction model. Europhys. Lett. 71(6), 1008–1014 (2005)

    Article  Google Scholar 

  3. Meghdadi, N., Soltani, M., Niroomand-Oscuii, H., Yamani, N.: Personalized image-based tumor growth prediction in a convection-diffusion-reaction model. Acta Neurol. Belg. 120, 49–57 (2020)

    Article  Google Scholar 

  4. Sheu, T.W., Wang, S.K., Lin, R.K.: An implicit scheme for solving the convection-diffusion-reaction equation in two dimensions. J. Comput. Phys. 164(1), 123–142 (2000)

    Article  MATH  Google Scholar 

  5. Sibert, J.R., Hampton, J., Fournier, D.A., Bills, P.J.: An advection-diffusion-reaction model for the estimation of fish movement parameters from tagging data, with application to skipjack tuna (Katsuwonus pelamis). Can. J. Fish. Aquat. Sci. 56(6), 925–938 (1999)

    Google Scholar 

  6. Bürger, R., Diehl, S., Mejías, C.: A difference scheme for a degenerating convection-diffusion-reaction system modelling continuous sedimentation, ESAIM: Math. Model. Numer. Anal. 52, 365–392 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  7. Lin, J., Reutskiy, S.Y., Lu, J.: A novel meshless method for fully nonlinear advection-diffusion-reaction problems to model transfer in anisotropic media. Appl. Math. Comput. 339(15), 459–476 (2018)

    MathSciNet  MATH  Google Scholar 

  8. John, V., Schmeyer, E.: Finite element methods for time-dependent convection-diffusion-reaction equations with small diffusion. Comput. Methods Appl. Mech. Engrg. 198(3–4), 475–494 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kaya, A.: Finite difference approximations of multidimensional unsteady convection-diffusion-reaction equations. J. Comput. Phys. 285, 331–349 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gu, X.-M., Huang, T.-Z., Ji, C.-C., Carpentieri, B., Alikhanov, A.A.: Fast iterative method with a second-order implicit difference scheme for time-space fractional convection-diffusion equation. J. Sci. Comput. 72(3), 957–985 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. El-Amrani, M., Seaïd, M.: A spectral stochastic semi-Lagrangian method for convection-diffusion equations with uncertainty. J. Sci. Comput. 39(3), 371–393 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. McLean, W., Mustapha, K., Ali, R., Knio, O.M.: Regularity theory for time-fractional advection-diffusion-reaction equations. Comput. Math. Appl. 79(4), 947–961 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hao, Z., Zhang, Z.: Optimal regularity and error estimates of a spectral Galerkin method for fractional advection-diffusion-reaction equations. SIAM J. Numer. Anal. 58(1), 211–233 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yang, Q., Liu, F., Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives. Appl. Math. Model. 34(1), 200–218 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Zhang, L., Sun, H.-W.: Numerical solution for multi-dimensional Riesz fractional nonlinear reaction-diffusion equation by exponential Runge-Kutta method. J. Appl. Math. Comput. 62(1–2), 449–472 (2020)

    Article  MathSciNet  Google Scholar 

  16. Hou, T., Tang, T., Yang, J.: Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations. J. Sci. Comput. 72, 1214–1231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. El-Danaf, T.S., Hadhoud, A.R.: Computational method for solving space fractional Fishers nonlinear equation. Math. Methods Appl. Sci. 37(5), 657–662 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Zhu, X., Nie, Y., Wang, J., Yuan, Z.: A numerical approach for the Riesz space-fractional Fisher equation in two-dimensions. Int. J. Comput. Math. 94(2), 296–315 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Macías-Díaz, J.E., González, A.E.: A convergent and dynamically consistent finite-difference method to approximate the positive and bounded solutions of the classical Burgers-Fisher equation. J. Comput. Appl. Math. 318, 604–615 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Rosa, M., Camacho, J.C., Bruzón, M.S., Gandarias, M.L.: Conservation laws, symmetries, and exact solutions of the classical Burgers-Fisher equation in two dimensions. J. Comput. Appl. Math. 354, 545–550 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shu, C.-W.: High order weighted essentially nonoscillatory schemes for convection dominated problems. SIAM Rev. 51(1), 82–126 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lu, D., Zhang, Y.-T.: Computational complexity study on Krylov integration factor WENO method for high spatial dimension convection-diffusion problems. J. Sci. Comput. 73(2–3), 980–1027 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhao, R., Zhang, Y.-T., Chen, S.: Krylov implicit integration factor WENO method for SIR model with directed diffusion. Discrete Contin. Dyn. Syst. Ser. B 24(9), 4983 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Jiang, G.-S., Shu, C.-W.: Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126, 202–228 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  25. Nie, Q., Zhang, Y.-T., Zhao, R.: Efficient semi-implicit schemes for stiff systems. J. Comput. Phys. 214, 521–537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nie, Q., Wan, F.Y.M., Zhang, Y.T., Liu, X.F.: Compact integration factor methods in high spatial dimensions. J. Comput. Phys. 227(10), 5238–5255 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lu, D., Zhang, Y.-T.: Krylov integration factor method on sparse grids for high spatial dimension convection-diffusion equations. J. Sci. Comput. 69(2), 736–763 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Du, Q., Zhu, W.: Stability analysis and applications of the exponential time differencing schemes. J. Comput. Math. 22(2), 200–209 (2004)

    MathSciNet  MATH  Google Scholar 

  29. Du, Q., Zhu, W.: Analysis and applications of the exponential time differencing schemes and their contour integration modifications. BIT Numer. Math. 45(2), 307–328 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  30. Ye, H., Liu, F., Anh, V., Turner, I.: Numerical analysis for the time distributed-order and Riesz space fractional diffusions on bounded domains. IMA J. Appl. Math. 80(3), 825–838 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Stynes, M., O’Riordan, E., Gracia, J.L.: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation. SIAM J. Numer. Anal. 55(2), 1057–1079 (2017)

  32. Zhang, Y.-N., Sun, Z.-Z., Liao, H.-L.: Finite difference methods for the time fractional diffusion equation on non-uniform meshes. J. Comput. Phys. 265, 195–210 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, C., Yi, Q., Chen, A.: Finite difference methods with non-uniform meshes for nonlinear fractional differential equations. J. Comput. Phys. 316, 614–631 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  34. Ng, M.: Iterative Methods for Toeplitz Systems, Oxford Science Publications, (2004)

  35. Kressner, D., Tobler, C.: Krylov subspace methods for linear systems with tensor product structure. SIAM J. Matrix Anal. Appl. 31(4), 1688–1714 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comp. 37(155), 105–126 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  37. Pang, H.-K., Sun, H.-W.: Shift-invert Lanczos method for the symmetric positive semidefinite Toeplitz matrix exponential. Numer. Linear Algebra Appl. 18(3), 603–614 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lee, S., Pang, H.-K., Sun, H.-W.: Shift-invert Arnoldi approximation to the Toeplitz matrix exponential. SIAM J. Sci. Comput. 32(2), 774–792 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chan, T.F.: An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 9(4), 766–771 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lei, S.-L., Sun, H.-W.: A circulant preconditioner for fractional diffusion equations. J. Comput. Phys. 242, 715–725 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  41. Pan, J., Ke, R., Ng, M.K., Sun, H.-W.: Preconditioning techniques for diagonal-times-Toeplitz matrices in fractional diffusion equations. SIAM J. Sci. Comput. 36(6), A2698–A2719 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Gu, X.-M., Huang, T.-Z., Zhao, X.-L., Li, H.-B., Li, L.: Strang-type preconditioners for solving fractional diffusion equations by boundary value methods. J. Comput. Appl. Math. 277, 73–86 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  43. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix functions. SIAM J. Numer. Anal. 44(6), 2481–2504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Morgan, R.B.: GMRES with deflated restarting. SIAM J. Sci. Comput. 24(1), 20–37 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  45. Botchev, M.A., Knizhnerman, L.: ART: adaptive residual-time restarting for Krylov subspace matrix exponential evaluations. J. Comput. Appl. Math. 364, 112311 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  46. Jian, H.-Y., Huang, T.-Z., Gu, X.-M., Zhao, X.-L., Zhao, Y.-L.: Fast implicit integration factor method for nonlinear space Riesz fractional reaction-diffusion equations. J. Comput. Appl. Math. 378, 112935 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  47. Jian, H.-Y., Huang, T.-Z., Gu, X.-M., Zhao, Y.-L.: Fast compact implicit integration factor method with non-uniform meshes for the two-dimensional nonlinear Riesz space-fractional reaction-diffusion equation. Appl. Numer. Math. 156, 346–363 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  48. Chan, R., Strang, G.: Toeplitz equations by conjugate gradients with circulant preconditioner. SIAM J. Sci. Stat. Comput. 10(1), 104–119 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  49. Chan, R., Jin, X.-Q.: An Introduction to Iterative Toeplitz Solvers. SIAM, PA (2007)

    Book  MATH  Google Scholar 

  50. Chan, R., Ng, M.: Conjugate gradient methods for Toeplitz systems. SIAM Rev. 38, 427–482 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  51. Cui, M.: Compact exponential scheme for the time fractional convection-diffusion reaction equation with variable coefficients. J. Comput. Phys. 280, 143–163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (61772003 and 11801463), the Applied Basic Research Project of Sichuan Province (2020YJ0007) and the Fundamental Research Funds for the Central Universities (No. zdjs2021002). The first author is also supported by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ting-Zhu Huang or Xian-Ming Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jian, HY., Huang, TZ., Ostermann, A. et al. Fast IIF–WENO Method on Non-uniform Meshes for Nonlinear Space-Fractional Convection–Diffusion–Reaction Equations. J Sci Comput 89, 13 (2021). https://doi.org/10.1007/s10915-021-01622-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01622-9

Keywords

Navigation