Skip to main content
Log in

Lignin-Based Magnetic Nanoparticle Adsorbent for Diclofenac Sodium Removal: Adsorption Behavior and Mechanisms

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Diclofenac sodium, as a typical deputation of non-steroidal anti-inflammatory drugs, is widely used in clinical treatment. Due to the heavy use, diclofenac sodium is commonly detected in water environment, and the removal of diclofenac sodium from wastewater is important for environmental protection. Notably, magnetic separation technology has become a novel performance in the removal of organic pollutants from wastewater in recent years. Herein, we engineered a lignin-based magnetic nanoparticle adsorbent (LMNA) by loading a magnetic core (Fe3O4) onto alkali lignin. This novel adsorbent has the advantage of green synthesis and low cost, making it an ideal material for wastewater treatment. Remarkably, the BET surface area of LMNA (739.2 m2 g−1) was higher than that of alkali lignin (2.2 m2 g−1). Adsorption batch experiments confirmed that the LMNA exhibited good adsorption performance to diclofenac sodium with a higher adsorption capacity of 106.4 mg g−1. The adsorption kinetic data and isothermal were well fitted by the pseudo-second-order rate equation (R2 = 0.980) and the Langmuir equation (R2 = 0.991), respectively. Moreover, the reaction mechanisms between the diclofenac sodium and LMNA mainly related to the synergism of electrostatic attractions, π–π stacking interactions and hydrogen bonding interactions. Especially, the LMNA exhibited high magnetic saturation strength (10.5 emu g−1) which made it easy to recycle, showing excellent reusability (4 cycles). Our work might introduce significant theoretical and experimental basis for realizing excellent adsorption of emerging organic pollutants from wastewater by the magnetic nanoparticle adsorbent.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Beyki MH, Shemirani F et al (2017) Magnetic cellulose ionomer/layered double hydroxide: An efficient anion exchange platform with enhanced diclofenac adsorption property. Carbohyd Polym 157:438–446

    Article  CAS  Google Scholar 

  2. Bhadra BN, Seo PW, Jhung SH (2016) Adsorption of diclofenac sodium from water using oxidized activated carbon. Chem Eng J 301:27–34

    Article  CAS  Google Scholar 

  3. Bu Q, Wang B, Huang J et al (2013) Pharmaceuticals and personal care products in the aquatic environment in China: A review. J Hazard Mater 262:189–211

    Article  CAS  PubMed  Google Scholar 

  4. Li S, Cui J, Wu X et al (2019) Rapid in situ microwave synthesis of Fe3O4 @MIL-100(Fe) for aqueous diclofenac sodium removal through integrated adsorption and photodegradation. J Hazard Mater 373:408–416

    Article  CAS  PubMed  Google Scholar 

  5. Ericson H, Thorsén G, Kumblad L (2010) Physiological effects of diclofenac, ibuprofen and propranolol on Baltic Sea blue mussels. Aquat Toxicol 99:223–231

    Article  CAS  PubMed  Google Scholar 

  6. Linson L, Rouissi T et al (2018) An insight into the adsorption of diclofenac on different biochars: Mechanisms, surface chemistry, and thermodynamics. Biores Technol 249:386–394

    Article  CAS  Google Scholar 

  7. Evgenidou EN, Konstantinou IK, Lambropoulou DA (2015) Occurrence and removal of transformation products of PPCPs and illicit drugs in wastewaters: A review. Sci Total Environ 505:905–926

    Article  CAS  PubMed  Google Scholar 

  8. Lonappan L, Rouissi T, Brar S et al (2017) Adsorption of diclofenac onto different biochar microparticles: Dataset – Characterization and dosage of biochar. Data Brief 16:460–465

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang D, Gersberg RM, Ng WJ et al (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: A review. Environ Pollut 184:620–639

    Article  CAS  PubMed  Google Scholar 

  10. Nam SW, Choi DJ, Kim SK et al (2014) Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J Hazard Mater 270:144–152

    Article  CAS  PubMed  Google Scholar 

  11. Sun T, Zhao Z, Liang Z et al (2018) Efficient degradation of p-arsanilic acid with arsenic adsorption by magnetic CuO-Fe3O4 nanoparticles under visible light irradiation. Chem Eng J 334:1527–1536

    Article  CAS  Google Scholar 

  12. Bernardo M, Rodrigues S, Lapa N et al (2016) High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int J Environ Sci Technol 13:1–12

    Article  CAS  Google Scholar 

  13. Lamine B, Abdelmottaleb L et al (2017) Adsorption of diclofenac and nimesulide on activated carbon: Statistical physics modeling and effect of adsorbate size. The Journal of Physics and Chemistry of Solids 109:117–123

    Article  Google Scholar 

  14. Wang X, Shi X, Zhou X et al (2018) Adsorption behavior of metal-organic framework NH2-MIL-53(Al) for diclofenac sodium in aqueous solution. Chemical Journal of Chinese Universities 39:206–211

    CAS  Google Scholar 

  15. Karaman R, Khamis M, Quried M et al (2012) Removal of diclofenac potassium from wastewater using clay-micelle complex. Environ Technol 33:1279–1287

    Article  CAS  PubMed  Google Scholar 

  16. Khatem R, Miguel RO, Bakhti A (2015) Use of synthetic clay for Removal of Diclofenac Anti-inflammatory. Eurasian Journal of Soilence 4:126–136

    Google Scholar 

  17. Tzereme A, Christodoulou E, Kyzas GZ et al (2019) Chitosan grafted adsorbents for diclofenac pharmaceutical compound removal from single-component aqueous solutions and mixtures. Polymers 11:497

    Article  CAS  PubMed Central  Google Scholar 

  18. Liu T, Xie Z, Zhang Y et al (2017) Preparation of cationic polymeric nanoparticles as an effective adsorbent for removing diclofenac sodium from water. RSC Adv 7:38279–38286

    Article  CAS  Google Scholar 

  19. Zhou M, Li Q, Zhong S et al (2017) Facile large-scale fabrication of magnetic carbon nano-onions for efficient removal of bisphenol A. Mater Chem Phys 198:186–192

    Article  CAS  Google Scholar 

  20. Lingamdinne LP, Roh H, Choi Y et al (2015) Influencing factors on sorption of TNT and RDX using rice husk biochar. J Ind Eng Chem 32:178–185

    Article  CAS  Google Scholar 

  21. Wu X, Shi Y, Zhong S et al (2016) Facile synthesis of Fe3O4-graphene@mesoporous SiO2 nanocomposites for efficient removal of Methylene Blue. Appl Surf Sci 378:80–86

    Article  CAS  Google Scholar 

  22. Wu Q, Ye X, Lv Y et al (2020) Lignin-based magnetic activated carbon for p-arsanilic acid removal: Applications and absorption mechanisms. Chemosphere 258:127276

    Article  CAS  PubMed  Google Scholar 

  23. Kaur A, Gupta U (2009) A review on applications of nanoparticles for the preconcentration of environmental pollutants. J Mater Chem 19:8279

    Article  CAS  Google Scholar 

  24. Zhang S, Niu H, Cai Y et al (2010) Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem Eng J 158:599–607

    Article  CAS  Google Scholar 

  25. Huang S, Su S, Gan H et al (2019) Facile fabrication and characterization of highly stretchable lignin-based hydroxyethyl cellulose self-healing hydrogel. Carbohyd Polym 223:115080

    Article  CAS  Google Scholar 

  26. Aro T, Fatehi P (2017) Production and application of lignosulfonates and sulfonated lignin. Chemsuschem 10:9

    Article  CAS  Google Scholar 

  27. Konduri M, Fatehi P (2015) Production of water-soluble hardwood kraft lignin via sulfomethylation using formaldehyde and sodium sulfite. Acs Sustainable Chemistry & Engineering 7:1172–1182

    Article  CAS  Google Scholar 

  28. Huang S, Wu L, Li T et al (2019) Facile preparation of biomass lignin-based hydroxyethyl cellulose super-absorbent hydrogel for dye pollutant removal. Int J Biol Macromol 137:939–947

    Article  CAS  PubMed  Google Scholar 

  29. Kong F, Wang S, Price J et al (2015) Water soluble kraft lignin–acrylic acid copolymer: synthesis and characterization. Green Chem 17:4355–4366

    Article  CAS  Google Scholar 

  30. Wu L, Huang S, Zheng J et al (2019) Synthesis and characterization of biomass lignin-based PVA super-absorbent hydrogel. Int J Biol Macromol 140:538–545

    Article  CAS  PubMed  Google Scholar 

  31. Cao D, Li H, Pan L et al (2016) High saturation magnetization of γ-Fe2O3 nano-particles by a facile one-step synthesis approach. Sci Rep 6:32360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamashita T, Hayes P (2008) Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl Surf Sci 254:2441–2449

    Article  CAS  Google Scholar 

  33. Thakur VK, Thakur MK, Raghavan P et al (2014) Progress in green polymer composites from lignin for multifunctional applications: A review. Acs Sustainable Chemistry & Engineering 2:1072–1092

    Article  CAS  Google Scholar 

  34. Zubir NA, Yacou C, Motuzas J et al (2018) Structural and functional investigation of graphene oxide–Fe3O4 nanocomposites for the heterogeneous Fenton-like reaction. Sci Rep 4:4594

    Article  CAS  Google Scholar 

  35. Baykal A, Toprak MS, Durmus Z et al (2012) Synthesis and characterization of dendrimer-encapsulated iron and iron-oxide nNanoparticles. J Supercond Novel Magn 25:1541–1549

    Article  CAS  Google Scholar 

  36. Fujii T, Groot FMFD, Sawatzky GA et al (2001) In situ XPS analysis of various iron oxide films grown by NO2-assisted molecular-beam epitaxy. Phys Rev B 59:3195

    Article  Google Scholar 

  37. Williams JR, Wang C, Chambers SA (2005) Heteroepitaxial growth and structural analysis of epitaxial α–Fe2O3(1010) on TiO2(001). J Mater Res 20:1250–1256

    Article  CAS  Google Scholar 

  38. Wilson D, Langell MA (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13

    Article  CAS  Google Scholar 

  39. Grosvenor AP, Kobe BA, Biesinger MC et al (2004) Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf Interface Anal 36:1564–1574

    Article  CAS  Google Scholar 

  40. Mao N, Huang L, Shuai Q (2019) Facile Synthesis of Porous Carbon for the Removal of Diclofenac Sodium from Water. ACS Omega 4:15051–15060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Viotti PV, Moreira WM, Santos OAAD et al (2019) Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. J Clean Prod 219:809–817

    Article  CAS  Google Scholar 

  42. Li Y, Taggart MA, Mckenzie C et al (2019) Utilizing low-cost natural waste for the removal of pharmaceuticals from water: Mechanisms, isotherms and kinetics at low concentrations. J Clean Prod 227:88–97

    Article  CAS  Google Scholar 

  43. Fa S, Chiswell B (2018) Glucose-reduced nano-graphene oxide with excellent accumulation removal of pharmaceuticals and personal care products from water. Int J Environ Anal Chem 247:2380–2391

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (No. 22008035), Fujian Industry-University-Research Project (No. 2019H6008), Natural Fujian Science Foundation National (No. 2020J05131), Science and Technology Project of Fujian Educational Committee (No. JAT190053), Fuzhou University Testing Fund of precious 23. apparatus (No. 2020T009) and Research Initiation Funding of Fuzhou University (No. GXRC-19060).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minghua Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (docx 409 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, X., Li, Y., Lin, H. et al. Lignin-Based Magnetic Nanoparticle Adsorbent for Diclofenac Sodium Removal: Adsorption Behavior and Mechanisms. J Polym Environ 29, 3401–3411 (2021). https://doi.org/10.1007/s10924-021-02127-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-021-02127-0

Keywords

Navigation