Skip to main content
Log in

Establishment and characterization of the Bactrocera dorsalis (Diptera: Tephritidae) embryonic cell line QAU-Bd-E-2

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

In this study, we successfully established a Bactrocera dorsalis (Diptera: Tephritidae) embryonic cell line, i.e., QAU-Bd-E-2, from the insect eggs. The cells have been stably passaged for more than 60 times in TNM-FH medium with 10% fetal bovine serum (FBS). QAU-Bd-E-2 cells are adherent cells. Most of the cells were round, spindle-shaped, and rod-shaped. Round cells accounted for 82.3%, with a diameter of 13.9 ± 2.6 µm; spindle-shaped cells accounted for 9.8%, with the size of 51.2 ± 11.2 µm × 10.3 ± 3.1 µm; the rod-shaped cells accounted for 7.9%, with the size of 35.2 ± 9.4 µm × 12.0 ± 2.5 µm. The mitochondrial cytochrome oxidase I subunit (CoI) gene from QAU-Bd-E-2 cells was amplified, and the 657 bp fragment had a 100% similarity with the CoI gene of B. dorsalis, suggesting that the cell line was derived from B. dorsalis. The chromosome number of QAU-Bd-E-2 cells was mostly 12, which is the same as the B. dorsalis chromosome number. The cell density of QAU-Bd-E-2 cells reached the maximum (3.4 × 106 cells/mL) at 192 h, and the population doubling time was 31.9 h. Bactrocera dorsalis cripavirus (BdCV) could replicate in QAU-Bd-E-2 cells, suggesting that this cell line could be used for in-depth study of the relationship between virus and host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Arunkarthick S, Asokan R, Aravintharaj R, Niveditha M, Krishna Kumar NK (2017) A review of insect cell culture: establishment, maintenance and applications in entomological research. J Entomol Sci 52(3):261–273

    Article  Google Scholar 

  • Augustinos AA, Yesmin F, Franz G, Sayed WAA, Zacharopoulou A, Robinson AS (2011) Analysis of mitotic and polytene chromosomes and photographic polytene chromosome maps in Bactrocera cucurbitae (Diptera: Tephritidae). Ann Entomol Soc Am 2:306–318

    Google Scholar 

  • Baimai V, Trinachartvanit W, Tigvattananont S, Grote PJ, Poramarcom R, Kijchalao U (1995) Metaphase karyotypes of fruit flies of Thailand. I. Five sibling species of the complex. Genome 5:1015–1022

    Article  Google Scholar 

  • Bonning BC, Miller WA (2010) Dicistroviruses. Annu Rev Entomol 55:129–150

    Article  CAS  Google Scholar 

  • Ding WF, Feng Y, Zhang X, Li X, Wang CY (2013) Establishment and characterization of a cell line developed from the neonate larvae of Papilio demoleus Linnaeus (Lepidoptera: Papilionidae). Vitro Cell Dev Biol -Anim 49(2):108–113

    Article  Google Scholar 

  • Folmer O, BlackM HoehW, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol 3:294–299

    CAS  Google Scholar 

  • Gomanz-Zilber E, Thomas-Onllard M (1993) Drosophila C virus and Drosophila hosts: a good association in various environments. J Evol Biol 6(5):677–689

    Article  Google Scholar 

  • Granados RR, Li GX, Blissard GW (2007) Insect cell culture and biotechnology. Virologica Sinica 2:83–93

    Article  Google Scholar 

  • Gupta V, Stewart CO, Rund SSC, Monteith K, Vale PF (2017) Costs and benefits of sublethal Drosophila C virus infection. J Evol Biol 30(7):1325–1335

    Article  CAS  Google Scholar 

  • Hayflick L (1973) Theory of population increase by subcultivation. In: Kruse PF, Patterson MK (eds) Tissue culture methods and application. Academic, New York, pp 222–223

    Google Scholar 

  • Ishaque A, Al-Rubeai M (2002) Role of vitamins in determining apoptosis and extent of suppression by bcl-2 during hybridoma cell culture. Apoptosis 7(3):231–239

    Article  CAS  Google Scholar 

  • Kim SB, Kim DS (2018) A tentative evaluation for population establishment of Bactrocera dorsalis (Diptera: Tephritidae) by its population modeling: considering the temporal distribution of host plants in a selected area in Jeju, Korea. J Asia Pac Entomol 21:451–465

    Article  Google Scholar 

  • Kingsolver MB, Huang Z, Hardy RW (2013) Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 425(24):4921–4936

    Article  CAS  Google Scholar 

  • Li J, He F, Yang Y, Xiao Y, Peng R, Yao H, Li X, Peng J, Hong H, Liu K (2015) Establishment and characterization of a novel cell line from midgut tissue of Helicoverpa armigera (Lepidoptera: Noctuidae). Vitro Cell Dev Biol -Anim 51(6):562–571

    Article  CAS  Google Scholar 

  • Liu H, Zhang DJ, Xu YJ, Wang L, Cheng DF, Qi YX, Zene L, Lu YY (2019) Invasion, expansion, and control of Bactrocera dorsalis (Hendel) in China. J Integr Agric 18(4):771–787

    Article  CAS  Google Scholar 

  • Lynn DE (2001) Novel techniques to establish new insect cell lines. In Vitro Cell Dev Biol Anim 37:319–321

    Article  CAS  Google Scholar 

  • Meng XQ, Zheng GL, Zhao CD, Wan FH, Li CY (2017) A cell clone strain from Mythimna separata (Lepidoptera: Noctuidae) highly susceptible to Autographa californica multiple nucleopolyhedrovirus (AcMNPV) and M. separata NPV (MsNPV). In Vitro Cell Dev Biol Anim 53(7):646–650

    Article  CAS  Google Scholar 

  • Novella IS, Presloid JB, Taylor RT (2014) RNA replication errors and the evolution of virus pathogenicity and virulence. Curr Opin Virol 9:143–147

    Article  CAS  Google Scholar 

  • Rossi E, Rainaldi G (2000) Induction of malathion resistance in CCE/CC128 cell line of Mediterranean fruit fly (Ceratitis capitata (Wied.)) (Diptera: Tephritidae). Cytotechnology 34:11–15

    Article  CAS  Google Scholar 

  • Schlaeger EJ (1996) Medium design for insect cell culture. Cytotechnology 20:57–70

    Article  CAS  Google Scholar 

  • Sharpe SR, Morrow JL, Brettell LE, Shearman DC, Gilchrist S, Cook JM, Riegler M (2021) Tephritid fruit flies have a large diversity of co-occurring RNA viruses. J Invertebr Pathol. https://doi.org/10.1016/j.jip.2021.107569

    Article  PubMed  Google Scholar 

  • Shen G, Wang X, Dou W, Wang J (2012) Biochemical and molecular characterisation of acetylcholinesterase in four field populations of Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Pest Manag Sci 68:1553–1563

    Article  CAS  Google Scholar 

  • Shi X, Lawrence PO (1999) An embryonic cell line from the Caribbean fruit fly, Anastrepha suspensa (Diptera: Tephritidae). In Vitro Cell Dev Biol Anim 35:12–14

    Article  CAS  Google Scholar 

  • Shirima RR, Maeda DG, Kanju E, Ceasar G, Tibazarwa FI, Legg JP (2017) Absolute quantification of Cassava brown streak virus mRNA by real-time qPCR. J Virol Methods 245:5–13

    Article  CAS  Google Scholar 

  • Smagghe G, Goodman CL, Stanley D (2009) Insect cell culture and applications to research and pest management. In Vitro Cell Dev Biol Anim 45:93–105

    Article  Google Scholar 

  • Stephens AEA, Kriticos DJ, Leriche A (2007) The current and future potential geographical distribution of the oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). Bull Entomol Res 97:369–378

    Article  CAS  Google Scholar 

  • Yesmin F, Clyde MM (2012) Study on mitotic metaphase chromosomes of Bactrocera carambolae (Diptera: Tephritidae) in Malaysia. Annual International Conference on Advances in Biotechnology (BioTech) 47–50

  • Zacharopoulou A, Augustinos AA, Sayed WAA, Robinson AS, Franz G (2010) Mitotic and polytene chromosomes analysis of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidae). Genetica 1:79–90

    Google Scholar 

  • Zeng Y, Reddy GVP, Li Z, Qin Y, Wang Y, Pan X, Jiang F, Gao F, Zhao ZH (2019) Global distribution and invasion pattern of oriental fruit fly, Bactrocera dorsalis (Diptera: Tephritidae). J Appl Entomol 143(3):165–176

    Article  Google Scholar 

  • Zhang X, Feng Y, Ma T, Ma Y, Ding W (2007) The chromosome analysis of 5 Diptera insect cell lines. For Res 4:551–555

    Google Scholar 

  • Zhang W, Gu Q, Niu J, Wang JJ (2020) The RNA virome and its dynamics in an invasive fruit fly, Bactrocera dorsalis, imply interactions between host and viruses. Microb Ecol 80(2):423–434

    Article  CAS  Google Scholar 

  • Zhang W, Zhang YC, Wang ZG, Gu QY, Niu JZ, Wang JJ (2021) The diversity of viral community in invasive fruit flies (Bactrocera and Zeugodacus) revealed by meta-transcriptomics. Microb Ecol. https://doi.org/10.1007/s00248-021-01790-z

    Article  PubMed  Google Scholar 

  • Zhao JT, Frommer M, Sved JA, Zacharopoulou A (1998) Mitotic and polytene chromosome analyses in the Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). Genome 41(4):510–526

    Article  CAS  Google Scholar 

Download references

Funding

This project was supported by the National Natural Science Foundation of China (31972333), and Major Scientific and Technological Innovation Projects in Shandong Province, China (2019JZZY010711).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-You Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, GL., Li, J., Yu, QL. et al. Establishment and characterization of the Bactrocera dorsalis (Diptera: Tephritidae) embryonic cell line QAU-Bd-E-2. In Vitro Cell.Dev.Biol.-Animal 57, 735–741 (2021). https://doi.org/10.1007/s11626-021-00619-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-021-00619-w

Keywords

Navigation