Skip to main content
Log in

Interfacial Rheology and Foaming Properties of Soy Protein and Hydrolysates under Acid Condition

  • ORIGINAL ARTICLE
  • Published:
Food Biophysics Aims and scope Submit manuscript

Abstract

In this study, the foamability of soy protein isolate (SPI), β-conglycinin (7S), soy protein selective hydrolysates (SPSH) and soy protein limited hydrolysate (SPLH) were tested at both acid and neutral conditions (pH 2.0, 3.0, 4.0 and 7.0). The properties of soy proteins (SPI and 7S) and hydrolysates (SPSH and SPLH) were analysed by particle size distribution, zeta potential, surface tension, interfacial rheology, foam expansion and stability. The particle size of soy proteins and hydrolysates decreased near the isoelectric point (pH 4.0). The 7S, SPSH and SPLH under acid conditions had lower surface tension than at pH 7.0. Under acid conditions, the higher foaming expansion of 7S, SPSH and SPLH than those under the neutral condition could be explained by lower surface tension, quicker adsorption and stronger viscoelastic properties; the better foaming stability can be attributed to a robust interfacial film. In summary, the SPSH and SPLH can be effective alternatives to egg white in aerated food due to the high foamability at both acid and neutral conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. W. Chen, G. Liang, X. Li, Z. He, M. Zen, D. Gao, F. Qin, H.D. Goff, J. Chen, Colloids Surfaces B Biointerfaces 177, 550 (2019)

    Article  CAS  Google Scholar 

  2. M. Lin, S.H. Tay, H. Yang, B. Yang, H. Li, Food Chem. 229, 663 (2017)

    Article  CAS  Google Scholar 

  3. F. X. Guo, Y. L. Xiong, F. Qin, H. J. Jian, X. L. Huang, and J. Chen, JAOCS, J. Am. Oil Chem. Soc. 92, 1075 (2015)

  4. F. Guo, Y.L. Xiong, F. Qin, H. Jian, X. Huang, J. Chen, J. Food Sci. 80, 279 (2015)

    Article  Google Scholar 

  5. T. Mori, T. Nakamura, S. Utsumi, J. Food Sci. 47, 26 (1982)

    Article  Google Scholar 

  6. S. Petruccelli, M.C. Añón, J. Agric. Food Chem. 43, 3035 (1995)

    Article  CAS  Google Scholar 

  7. Y. Wan, J. Liu, S. Guo, Food Chem. 245, 542 (2018)

    Article  CAS  Google Scholar 

  8. W. Li, Z. Haibo, H. Zhiyong, Z. Maomao, Q. Fang, J. Chen, Colloids Surfaces B Biointerfaces 138, 70 (2016)

    Article  CAS  Google Scholar 

  9. S.E. Molina Ortiz, J.R. Wagner, Food Res. Int. 35, 511 (2002)

    Article  CAS  Google Scholar 

  10. L. Were, N.S. Hettiarachchy, U. Kalapathy, J. Food Sci. 62, 821 (1997)

    Article  CAS  Google Scholar 

  11. K. Tsumura, T. Saito, K. Tsuge, H. Ashida, W. Kugimiya, K. Inouye, LWT - Food Sci. Technol. 38, 255 (2005)

    Article  CAS  Google Scholar 

  12. W. U. Wu, N. S. Hettiarachchy, and M. Qi, JAOCS, J. Am. Oil Chem. Soc. 75, 845 (1998)

  13. K.D. Martínez, C. Carrera Sánchez, J.M. Rodríguez Patino, A.M.R. Pilosof, Food Hydrocoll. 23, 2149 (2009)

    Article  Google Scholar 

  14. W. Li, Y. Wang, H. Zhao, Z. He, M. Zeng, F. Qin, J. Chen, Food Hydrocoll. 60, 453 (2016)

    Article  CAS  Google Scholar 

  15. X. Zhang, H. Zhiyong, M. Zeng, F. Qin, J. Chen, Sci. Technol. Food Ind. 40, 8 (2019) (In Chinese)

    Google Scholar 

  16. N. Diftis, V. Kiosseoglou, Food Hydrocoll. 20, 787 (2006)

    Article  CAS  Google Scholar 

  17. C. Cui, M. Zhao, B. Yuan, Y. Zhang, J. Ren, J. Food Sci. 78, 1871 (2013)

    Article  Google Scholar 

  18. V. P. Ruíz-Henestrosa, C. C. Sánchez, M. del M. Y. Escobar, J. J. P. Jiménez, F. M. Rodríguez, and J. M. R. Patino, Colloids Surfaces A Physicochem. Eng. Asp. 309, 202 (2007)

  19. A. Schwenzfeier, F. Lech, P.A. Wierenga, M.H.M. Eppink, H. Gruppen, Food Hydrocoll. 33, 111 (2013)

    Article  CAS  Google Scholar 

  20. M. Kuropatwa, A. Tolkach, U. Kulozik, Food Hydrocoll. 23, 2174 (2009)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project is supported by the independent research project program of the State Key Laboratory of Food Science and Technology, Jiangnan University (SKLF-ZZB-202012) and the independent research project program of Future Food Centre, Jiangnan University (JUSRP52023A). The authors would like to thank Fang Qin for technical support.

Author information

Authors and Affiliations

Authors

Contributions

Wang Z.: Investigation; Methodology; Writing — Original draft, review and editing.

Zhang L.: Investigation; Methodology; Validation; Writing – Review and editing.

Zhang X.: Methodology; Investigation; Validation; Writing – Original draft.

Zeng M.: Investigation; Methodology; Writing – Review and editing.

He Z.: Investigation; Methodology; Writing – Review and editing.

Chen J.: Conceptualization; Methodology; Formal Analysis; Supervision; Writing – Original draft, review and editing.

Corresponding author

Correspondence to Jie Chen.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Zhang, L., Zhang, X. et al. Interfacial Rheology and Foaming Properties of Soy Protein and Hydrolysates under Acid Condition. Food Biophysics 16, 484–491 (2021). https://doi.org/10.1007/s11483-021-09685-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11483-021-09685-9

Keywords

Navigation