Skip to main content
Log in

Friction stir vibration brazing (FSVB): an improved version of friction stir brazing

  • Research Paper
  • Published:
Welding in the World Aims and scope Submit manuscript

Abstract

Friction stir vibration brazing (FSVB) by application of mechanical vibration was introduced in this investigation. In the current research, the adjoining samples are vibrated normally to the brazing line while FSB is performed. Low carbon steel sheets are joined together using FSB and FSVB while SiC nanoparticles are also incorporated in the joint. The microstructure and mechanical behavior of the joints developed under different conditions are analyzed. %67wt Sn-%33wt Pb alloy is used as braze metal. The results show that the strength of the friction stir vibration brazed specimens is higher than that of the friction stir brazed specimens. The vibration of adjoining specimens, during FSVB, enhances the eutectic reaction of the melt braze metal between the adjoining specimens and the melt fills the space between adjoining specimens thoroughly. By introducing vibration during the FSB process, both strain rate and temperature which have fundamental effects on the characteristics of the joints, increase. The results indicate that the strength and the hardness of FSVB-ed samples increase and the grain size decreases as vibration frequency increases from 30 to 60 Hz. In addition, the thickness of IMCs in the joint interface decreased to around 0.7 µm as the vibration frequency increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Abtew M, Selvaduray G (2000) Lead-free solders in microelectronics. Mater Sci Eng R Rep 27:95–141

    Article  Google Scholar 

  2. Tan AT, Tan AW, Yusof F (2017) Evolution of microstructure and mechanical properties of Cu/SAC305/Cu solder joints under the influence of low ultrasonic power. J Alloy Comp 25:188–197

    Article  CAS  Google Scholar 

  3. Mohd Salleh MAA, McDonald SD, Gourlay CM, Yasuda H, Nogita K (2016) Suppression of Cu6Sn5 in Tio2 reinforced solder joints after multiple reflow cycles. Mater Des 108:418–428

    Article  CAS  Google Scholar 

  4. Ma ZL, Belyakov SA, Gourlay CM (2016) Effects of cobalt on the nucleation and grain refinement of Sn-3Ag-0.5Cu solders. J Alloy Comp 682(2016):326–337

    Article  CAS  Google Scholar 

  5. Jing Y, Gao X, Su D, Zhao C, Jiang J (2018) The effects of Zr level in Ti-Zr-Cu-Ni brazing fillers for brazing Ti-6Al-4V. J Manuf Process 31:124–130

    Article  Google Scholar 

  6. Sharma A, Lee SJ, Choi DY, Jung JP (2017) Effect of brazing current and speed on the bead characteristics, microstructure and mechanical properties of the arc brazed galvanized steel sheets. J Mater Process Tech 249:212–220

    Article  CAS  Google Scholar 

  7. Zhang G, Su W, Zhang J, Wei Z (2011) Friction stir brazing: a novel process for fabricating Al/steel layered composite and for dissimilar joining of Al to steel. Metal Mater Trans A 42A:2850–2861

    Article  CAS  Google Scholar 

  8. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Article  CAS  Google Scholar 

  9. Jafari M, Abbasi M, Poursina D, Gheysarian A, Bagheri B (2017) Microstructure and mechanical properties of friction stir welded dissimilar steel-copper joints. J Mech Sci Tech 31:1135–1142

    Article  Google Scholar 

  10. Abbasi M, Bagheri B, Dadaei M, Omidvar H, Rezaei M (2015) The effect of FSP on mechanical, tribological and corrosion behavior of composite layer developed on magnesium AZ91 alloy surface. J Adv Manuf Tech 77:2051–2058

    Article  Google Scholar 

  11. Yang JG, Wu JW, Fang HY (2003) Effects of Al2O3 particulates on the thickness of reaction layer of Al2O3 joints brazed with Al2O3-particulate-contained composite filler materials. J Mater Sci Technol 19:509–510

    CAS  Google Scholar 

  12. Chuang TH, Wu MW, Chang SY, Ping SF, Tsao LC (2011) Strengthening mechanism of nano-Al2O3, particles reinforced Sn3.5Ag0.5Cu lead-free solder. J Mater Sci Mater Electron 22:1021–1027

    Article  CAS  Google Scholar 

  13. Javadi MJ, Fazel-Najafabadi M (2014) Effect of friction stir brazing parameters on microstructure and mechanical properties of dissimilar alloys joint. Indi J Sci Res 2:615–622

    Google Scholar 

  14. Huang G, Feng X, Shen Y, Zheng Q, Zhao P (2016) Friction stir brazing of 6061 aluminum alloy and H22 brass: evaluation of microstructure, mechanical and fracture behavior. Mater Des 99:403–411

    Article  CAS  Google Scholar 

  15. Wei Cu, Shuqi L, Jiuchun Y, Xing Zh (2018) Microstructure and mechanical performance of composite joints of sapphire by ultrasonic-assisted brazing. J Mater Process Tech 257:1–6

    Article  CAS  Google Scholar 

  16. Chen X, Xie R, Lai Zh, Liu L, Yan J, Zou G (2017) Interfacial structure and formation mechanism of ultrasonic-assisted brazed joint of SiC ceramics with Al–12Si Filler Metals in Air. J Mater Sci Tech 33:492–498

    Article  CAS  Google Scholar 

  17. Vianco P, Hosking F, Rejent J (1996) Ultrasonic soldering for structural and electronic applications. Weld J 75:343–355

    Google Scholar 

  18. Huang G, Huang J, Zhang M, Mu D, Zhou G, Xu X (2018) Fundamental aspects of ultrasonic assisted induction brazing of diamond onto 1045 steel. J Mater Process Tech 260:123–136

    Article  CAS  Google Scholar 

  19. Xu G, Leng X, Jiang H, Xiu Z, Yan J (2020) Microstructure and strength of ultrasonic-assisted brazed joints of Si3N4/6061Al composites. J Manuf Process 54:89–98

    Article  Google Scholar 

  20. Zhang Ch, Ji H, Xu H, Liang M, Huang J, Pei Sh, Li M (2020) Interfacial microstructure and mechanical properties of ultrasonic-assisted brazing joints between Ti–6Al–4V and ZrO2. Ceramic Int 46:7733–7740

    Article  CAS  Google Scholar 

  21. Davies SH (2001) Theory of solidification. Cambridge University Press, New York

    Book  Google Scholar 

  22. Li C, Si XQ, Dai XY (2019) Understanding the effect of surface machining on the YSZ/Ti6Al4V joint via image based modelling. Sci Rep 9(1):1–13

    Google Scholar 

  23. Abbasi M, Bagheri B, Abdollahzadeh A, Moghaddam AO (2021) A different attempt to improve the formability of aluminum tailor welded blanks (TWB) produced by the FSW. Int J Mater Form 14:1189–1208

    Article  Google Scholar 

  24. Bagheri B, Abbasi M, Abdollahzadeh A, Kokabi AH (2020) A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposite. J Min Metal Mater 27:1133–1146

    Article  CAS  Google Scholar 

  25. Bagheri B, Abdollahzadeh A, Abbasi M, Kokabi AH (2020) Numerical analysis of vibration effect on friction stir welding by smoothed particle hydrodynamics (SPH). J Adv Manufac Technol 110:209–228

    Article  Google Scholar 

  26. Zhang G, Yang X, Zhu D, Zhang L (2020) Cladding thick Al plate onto strong steel substrate using a novel process of multilayer-friction stir brazing (ML-FSB). Mater Des 185:108232

    Article  CAS  Google Scholar 

  27. Brujan EA, Ikeda T, Matsumoto Y (2008) On the pressure of cavitation bubbles. Exp Therm Fluid Sci 32(5):1188–1191

    Article  CAS  Google Scholar 

  28. Wagterveld RM, Boels L, Mayer MJ, Witkamp GJ (2011) Visualization of acoustic cavitation effects on suspended calcite crystals. Ultrason Sonochem 18(1):216–225

    Article  CAS  Google Scholar 

  29. Bagheri B, Abbasi M, Hamzeloo R (2020) The investigation into vibration effect on microstructure and mechanical characteristics of friction stir spot vibration welded aluminum: Simulation and experiment. Proc Ins Mech Eng: Part C J Mech Eng Sci 234(9):1809–1822

    CAS  Google Scholar 

  30. Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, USA

    Google Scholar 

  31. Shen YL, Abell KCR, Garrett SE (2004) Effects of grain boundary sliding on microstructural evolution and damage accumulation in tin-lead alloy. Int J Damag Mechanic 13:225–240

    Article  CAS  Google Scholar 

  32. Cui W, Li SH, Yan J, He J, Liu Y (2015) Ultrasonic-assisted brazing of sapphire with high strength Al–4.5Cu–1.5Mg alloy. Ceramic In 41:8014–8022

    Article  CAS  Google Scholar 

  33. Gencalp S, Saklakoglu N (2012) Effects of low-frequency mechanical vibration and casting temperature on microstructure of semisolid AlSi8Cu3Fe alloy. Arab J Sci Eng 37:2255–2267

    Article  CAS  Google Scholar 

  34. Kocatepe K (2007) Effect of low frequency vibration on porosity of LM25 and LM6 alloys. Mater Des 28:1767–1775

    Article  CAS  Google Scholar 

  35. Bagheri B, Abbasi M, Dadaei M (2020) Mechanical behavior and microstructure of AA6061-T6 joints made by friction stir vibration welding. J Mater Eng Perform 29:1165–1175

    Article  CAS  Google Scholar 

  36. Porter DA, Easterling KE, Sherif M (2009) Phase transformation in metals and alloys, 3rd edn. CRC Press, New York, pp 156–165

    Google Scholar 

  37. Yang ZW, Zhang LX, Chen YC, Qi JL, He P, Feng JC (2013) Interlayer design to control interfacial microstructure and improve mechanical properties of active brazed Invar/SiO2–BN joint. Mater Sci Eng A 575:199–205

    Article  CAS  Google Scholar 

  38. Zhao YX, Wang MR, Cao J, Song XG, Tang DY, Feng JC (2015) Brazing TC4 alloy to Si3N4 ceramic using nano-Si3N4 reinforced Ag-Cu composite filler. Mater Des 76:40–46

    Article  CAS  Google Scholar 

  39. Dai X, Cao J, Chen Z, Song X, Feng J (2016) Effect of holding time on microstructure and mechanical properties of SiC/SiC joints brazed by Ag-Cu-Ti+B4C composite filler. Mater Character 118:294–301

    Article  CAS  Google Scholar 

  40. Dieter GE (1988) Mechanical metallurgy. McGraw-Hill Book Company, Singapore

    Google Scholar 

  41. Bulatov V, Cai W (2006) Computer simulations of dislocations. Oxford Materials, Oxford, pp 243–249

    Book  Google Scholar 

  42. Callister WD (1994) Materials science and engineering: an introduction. John Wiley & Sons Inc, New York

    Google Scholar 

  43. Hertzberg RW (1989) Deformation and fracture mechanics of engineering materials. John Wiley & Sons Inc, New York

    Google Scholar 

  44. Abdollahzadeh A, Bagheri B, Abbasi M, Kokabi AH, Moghaddam AO (2021) Comparison of the weldability of AA6061-T6 joint under different friction stir welding conditions. J Mater Eng Perform 30:1110–1127

    Article  CAS  Google Scholar 

  45. Tan AT, Tan AW, Yusof F (2016) Influence of high-power-low-frequency ultrasonic vibration time on the microstructure and mechanical properties of lead-free solder joints. J Mater Process Technol 238:8–14

    Article  CAS  Google Scholar 

  46. Bagheri B, Abbasi M, Abdollahzadeh A, Mirsalehi SE (2020) The effect of second phase particle size and presence of vibration on AZ91/SiC surface composite layer produced by FSP. Trans Nonferrous Metal Soc Chin 30:905–916

    Article  CAS  Google Scholar 

  47. Abbasi M, Givi M, Bagheri B (2019) Application of vibration to enhance efficiency of friction stir processing. Trans Nonferrous Metal Soc Chin 29:393–1400

    Article  Google Scholar 

  48. Bagheri B, Abbasi M (2020) Development of AZ91/SiC surface composite by FSP: effect of vibration and process parameters on microstructure and mechanical characteristics. Adv Manuf 8:82–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behrouz Bagheri.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Recommended for publication by Commission XVII - Brazing, Soldering and Diffusion Bonding

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbasi, M., Bagheri, B., Sharifi, F. et al. Friction stir vibration brazing (FSVB): an improved version of friction stir brazing. Weld World 65, 2207–2220 (2021). https://doi.org/10.1007/s40194-021-01173-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40194-021-01173-5

Keywords

Navigation