Skip to main content
Log in

The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Copper oxide nanoparticles (CuO NPs) are one of the most widely used materials owing to their excellent properties such as thermal and photochemical stability, superconductivity, and high electrochemical activity. Once they enter the environment, Cu2+ may be released in water, which alters the behavior and toxicity of CuO NPs. The present study thus investigated the dissolution of CuO NPs (40 nm) in the presence of tannic acid (TA), a model chemical of dissolved organic matter. The adsorption of TA decreased the hydrodynamic diameter of CuO NPs and increased the zeta potential of the suspension. Although the adsorption of TA on particle surface improved the dispersion of CuO NPs, their dissolution extents were all reduced at TA concentration up to 55.4 mg C L−1. At pH 5, the contributions of TA complexed Cu to the overall dissolution increased up to 37.8% as a function of TA concentrations. All the findings shown above approved that the strong adsorption of TA played a dominant role in preventing the dissolution of CuO NPs.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on a reasonable request.

References

  • Benedetti, M. F., Milne, C. J., Kinniburgh, D. G., Riemsdijk, W. H. V., & Koopal, L. K. (1995). Metal ion binding to humic substances: Application of the non-ideal competitive adsorption model. Environmental Science & Technology, 29, 446–457.

    Article  CAS  Google Scholar 

  • Borm, P., Klaessig, F. C., Landry, T. D., Moudgil, B., Pauluhn, J., Thomas, K., Trottier, R., & Wood, S. (2006). Research strategies for safety evaluation of nanomaterials, part V: Role of dissolution in biological fate and effects of nanoscale particles. Toxicological Sciences, 90(1), 23–32.

    Article  CAS  Google Scholar 

  • Chu, G., Zhao, J., Liu, Y., Lang, D., Wu, M., Pan, B., & Steinberg, C. E. W. (2019). The relative importance of different carbon structures in biochars to carbamazepine and bisphenol A sorption. Journal of Hazardous Materials, 373, 106–114.

    Article  CAS  Google Scholar 

  • Chang, M. Y., & Juang, R. S. (2004). Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. Journal of Colloid and Interface Science, 278(1), 18–25.

    Article  CAS  Google Scholar 

  • Diedrich, T., Dybowska, A., Schott, J., Valsami-Jones, E., & Oelkers, E. H. (2012). The dissolution rates of SiO2 nanoparticles as a function of particle size. Environmental Science & Technology, 46(9), 4909–4915.

    Article  CAS  Google Scholar 

  • Gilli, G., & Gilli, P. (2000). Towards an unified hydrogen-bond theory. Journal of Molecular Structure, 552(1–3), 1–15.

    Article  CAS  Google Scholar 

  • Givens, B. E., Xu, Z., Fiegel, J., & Grassian, V. H. (2017). Bovine serum albumin adsorption on sio2 and tio2 nanoparticle surfaces at circumneutral and acidic ph: A tale of two nano-bio surface interactions. Journal of Colloid & Interface Science, 493, 334–341.

    Article  CAS  Google Scholar 

  • Ghosh, S. K., & Pal, T. (2007). Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chemical Reviews, 107(11), 4797–4862.

    Article  CAS  Google Scholar 

  • Holsapple, M. P., Farland, W. H., Landry, T. D., MonteiroRiviere, N. A., Carter, J. M., Walker, N. J., & Thomas, K. V. (2005). Research strategies for safety evaluation of nonmaterials, part II: Toxicological and safety evaluation of nanomaterials, current challenges and data needs. Toxicological Sciences, 88(1), 12–17.

    Article  CAS  Google Scholar 

  • Jayalath, S., Wu, H., Larsen, S. C., & Grassian, V. H. (2018). Surface adsorption of Suwannee River humic acid on TiO2 nanoparticles: A study of pH and particle size. Langmuir, 34(9), 3136–3145.

    Article  CAS  Google Scholar 

  • Joonas, E., Aruoja, V., Olli, K., & Kahru, A. (2019). Environmental safety data on CuO and TiO2 nanoparticles for multiple algal species in natural water: Filling the data gaps for risk assessment. Science of the Total Environment, 647, 973–980.

    Article  CAS  Google Scholar 

  • Liu, S., Liu, Y., Pan, B., He, Y., Li, B., Zhou, D., Xiao, Y., Qiu, H., Vijver, M. G., & Peijnenburg, W. J. G. M. (2020). The promoted dissolution of copper oxide nanoparticles by dissolved humic acid: Copper complexation over particle dispersion. Chemosphere, 245, 125612.

    Article  CAS  Google Scholar 

  • Liu, Y., Pan, B., Li, H., Lang, D., Zhao, Q., Zhang, D., Wu, M., Steinberg, C., & Xing, B. (2020). Can the properties of engineered nanoparticles be indicative of their functions and effects in plants? Ecotoxicology and Environmental Safety, 205, 111128.

    Article  CAS  Google Scholar 

  • Nebbioso, A., & Piccolo, A. (2013). Molecular characterization of dissolved organic matter (DOM): A critical review. Analytical and Bioanalytical Chemistry, 405, 109–124.

    Article  CAS  Google Scholar 

  • Pan, B., Wang, P., Wu, M., Li, J., Zhang, D., & Xiao, D. (2012). Sorption kinetics of ofloxacin in soils and mineral particles. Environmental Pollution, 171, 185–190.

    Article  CAS  Google Scholar 

  • Renuga, D., Jeyasundari, J., ShakthiAthithan, A. S., & Brightson Arul Jacob, Y. (2020). Synthesis and characterization of copper oxide nanoparticles using Brassica oleracea var italic extract for its antifungal application. Material Research Express, 7, 045007.

    Article  CAS  Google Scholar 

  • Suttiponparnit, K., Jiang, J., Sahu, M., Suvachittanont, S., Charinpanitkul, T., & Biswas, P. (2011). Role of surface area, primary particle size, and crystal phase on titanium dioxide nanoparticle dispersion properties. Nanoscale Research Letters, 6(1), 27.

    Article  Google Scholar 

  • Wang, Z., Zhang, L., Zhao, J., & Xing, B. (2016). Environmental processes and toxicity of metallic nanoparticles in aquatic systems as affected by natural organic matter. Environmental Science Nano, 3, 240–255.

    Article  Google Scholar 

  • Yang, K., Lin, D., & Xing, B. (2009). Interactions of humic acid with nanosized inorganic oxides. Langmuir, 25, 3571–3576.

    Article  CAS  Google Scholar 

  • Zhao, J., Liu, Y., Pan, B., Gao, G., Liu, Y., Liu, S., Liang, N., Zhou, D., Vijver, M. G., & Peijnenburg, W. J. G. M. (2017). Tannic acid promotes ion release of copper oxide nanoparticles: Impacts from solution pH change and complexation reactions. Water Research, 127, 59–67.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (41967039); the Yunnan Provincial Ten Thousand Plan (YNWR-QNBJ-2019–065); and the Yunnan Basic Research Plan (202001AT070042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 422 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Liu, Y., He, Y. et al. The Relative Contributions of Complexation, Dispersing, and Adsorption of Tannic Acid to the Dissolution of Copper Oxide Nanoparticles. Water Air Soil Pollut 232, 359 (2021). https://doi.org/10.1007/s11270-021-05322-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05322-w

Keywords

Navigation