Skip to main content

Advertisement

Log in

Different Soil Factors Influencing Dehydrogenase Activity in Mine Degraded Lands—State-of-Art Review

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Soil enzymes quickly respond to the disturbances caused in environmental pollution originating from human activities. Computation of enzyme activities has been used as indexes of microbial functionality, soil fertilization, biochemical cycling of numerous components in soil, extent of contamination, and ecosystem succession. Soil enzyme activity is one of the soil biological properties used as an indicator of soil quality due to their interrelationship to soil biology, being sensitive, integrative, ease to measure, “biological fingerprints” of previous soil management, indicator of biological symmetry, fertility, and changes in biological status of soil due to pollution. Dehydrogenase (DHG) enzymes are one of the most important components of soil enzymatic assay, as they determine the correct order of all biochemical pathways in soil biogeochemical cycles. While dehydrogenase activity (DHA) is calculated utilizing the procedures INT and TTC substrate in soil at the same time, a number of authors expressed their views about the unsatisfactory results when TTC has applied as substrate. Most of the researchers have applied incubation periods of 24 h at 37 °C, but some are modified it to 6 h 37 °C with either glucose or yeast extract as electron-donating substrate. Generally, in coal mine spoil, DHG functionality seems to lower, could be owing to the damage microflora, lack of soil organic matter. Measurement of DHA is frequently used as an extent of any disturbance owing to fertilizers, heavy metals, or other soil amendment (for management) practices, or, instantaneously degree of microbial functionality of soil.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agnelli, A., Ascher, J., Corti, G., Ceccechrini, M., Nannipieri, P., & Pietramellara, G. (2004). Distribution of microbial communities in a forest soil profile investigated by microbial biomass, soil respiration and DGGE of total and extracellular DNA. Soil Biology & Biochemistry, 36, 859–868.

    Article  CAS  Google Scholar 

  • Aguilera, M., Borie, G., Rokov, P., & Peirano, P. (1988). BioquõÂmica de suelos derivados de cenizas volca nicas. VII. Determinacioâ n De Deshidrogenasas. Agricultura Teâcnica (chile), 48, 147–151.

    Google Scholar 

  • Ahirwal, J., & Maiti, S. K. (2018). Development of Technosol properties and recovery of carbon stock after 16 years of revegetation on coal mine degraded lands, India. CATENA, 166, 114–123.

    Article  CAS  Google Scholar 

  • Antunes, S., Pereira, R., Marques, S., Castro, B., & Gonçalves, F. (2011). Impaired microbial activity caused by metal pollution: A field study in a deactivated uranium mining areA. Science of the Total Environment, 410, 87–95.

    Article  CAS  Google Scholar 

  • Araújo, A. S. F., Cesarz, S., Leite, L. F. C., Borges, C. D., Tsai, S. M., & Eisenhauer, N. (2013). Soil microbial properties and temporal stability in degraded and restored lands of Northeast Brazil. Soil Biology and Biochemistry, 66, 175–181.

    Article  CAS  Google Scholar 

  • Benckiser, G., Santiago, S., Neue, U., Watanabe, I., & Ottow, J. C. G. (1984). Effect of fertilisation on exudation, dehydrogenase activity, iron-reducing populations and Fe++ formation in the rhizosphere of rice (Oryza sativa L.) in relation to iron toxicity. Plant and Soil, 79, 305–306.

    Article  CAS  Google Scholar 

  • Benefield, C. B., Howard, P. J. A., & Howard, D. M. (1977). The estimation of dehydrogenase activity in soil. Soil Biology and Biochemistry, 9(1), 67–70.

    Article  CAS  Google Scholar 

  • Benidire, L., Pereira, S. I., Naylo, A., Castro, P. M., & Boularbah, A. (2020). Do metal contamination and plant species affect microbial abundance and bacterial diversity in the rhizosphere of metallophytes growing in mining areas in a semiarid climate? Journal of Soils and Sediments, 20(2), 1003–1017.

    Article  CAS  Google Scholar 

  • Beyer, L., Wachendorf, C., Balzer, F. M., & Balzer-Graf, U. R. (1992). The use of biological methods to determine the microbiological activity of soils under cultivation. Biology and Fertility of Soils, 13(4), 242–247.

    Article  CAS  Google Scholar 

  • Beyer, L., Wachendorf, C., Elsner, D. C., & Knabe, R. (1993). Suitability of dehydrogenase activity assay as an index of soil biological activity. Biology and Fertility of Soils, 16(1), 52–56.

    Article  CAS  Google Scholar 

  • Błońska, E. (2010). Enzyme activity in forest peat soils. Folia Forestalia Polonica, 52, 20–25.

    Google Scholar 

  • Bohrerova, Z., Stralkova, R., Podesvova, J., Bohrer, G., & Pokorny, E. (2004). The relationship between redox potential and nitrification under different sequences of crop rotations. Soil and Tillage Research, 77(1), 25–33.

    Article  Google Scholar 

  • Brzezińska, M. (2006). Impact of Treated Wastewater on Biological Activity and Accompanying Processes in Organic Soils. Acta Agrophysica, 131, 1–163.

  • Brzezińska, M., Stępniewska, Z., & Stępniewski, W. (1998). Soil oxygen status and dehydrogenase activity. Soil Biology & Biochemistry, 30, 1783–1790.

    Article  Google Scholar 

  • Brzezińska, M., Stępniewski, W., Stępniewska, Z., & Przywara, G. (2001). Effect of oxygen deficiency on soil dehydrogenase activity in a pot experiment with triticale CV. Jago Vegetation. International Agrophysics, 15, 145–149.

    Google Scholar 

  • Buta, M., Blaga, G., Paulette, L., Păcurar, I., Roșca, S., Borsai, O., Grecu, F., Sînziana, P. E., & Negrușier, C. (2019). Soil reclamation of abandoned mine lands by revegetation in northwestern part of Transylvania: A 40-year retrospective study. Sustainability, 11(12), 3393.

    Article  CAS  Google Scholar 

  • Casida, L. E., Jr., Klein, D. A., & Santoro, T. (1964). Soil dehydrogenase activity. Soil Science, 98(6), 371–376.

    Article  CAS  Google Scholar 

  • Chodak, M., & Niklińska, M. (2010a). Effect of texture and tree species on microbial properties of mine soils. Applied Soil Ecology, 46, 268–275.

    Article  Google Scholar 

  • Chodak, M., & Niklińska, M. (2010b). The effect of different tree species on the chemical and microbial properties of reclaimed mine soils. Biology and Fertility of Soils, 46(6), 555–566.

    Article  CAS  Google Scholar 

  • Cirilli, F., Bellincontro, A., De Santis, D., Botondi, R., Colao, M., Muleo, R., & Mencarelli, F. (2012). Temperature and water loss affect ADH activity and gene expression in grape berry during postharvest dehydration. Food Chemistry, 132, 447–454.

    Article  CAS  Google Scholar 

  • Claassens, S., Riedel, K. J., Van Rensburg, L., Morgenthal, T. L., & Van Rensburg, P. J. (2006). Soil microbial properties in coal mine tailings under rehabilitation. Applied Ecology and Environmental Research, 4(1), 75–83.

    Article  Google Scholar 

  • Curl, H., & Sandberg, J. (1961). The measurement of dehydrogenase activity in marine organisms. Journal of Marine Research, 19(3), 123–138.

    CAS  Google Scholar 

  • de Varennes, A., Cunha-Queda, C., & Qu, G. (2010). Amendment of an acid mine soil with compost and polyacrylate polymers enhances enzymatic activities but may change the distribution of plant species. Water, Air, and Soil Pollution, 208(1–4), 91–100.

    Article  CAS  Google Scholar 

  • Dick, R.P. (1994). Soil enzyme activities as indicators of soil quality. In: J.W. Doran, D.C., Coleman, D.F., Bezdicek and B.A. Stewart (eds) Defining soil quality for a sustainable environment. Soil Science Society of America, Madison. 35, 107-124.

  • Dick, W.A. & Tabatabai, M.A. (1993). Significance and potential uses of soil enzymes. Soil Microbial Ecology: Application in Agricultural and Environmental Management. Ed. F.B. Metting. Marcel Dekker, New York, 95, 127.

  • Fernandez-Calviño, D., Soler-Rovira, P., Polo, A., Diaz-Raviña, M., Arias-Estevez, M., & Plaza, C. (2010). Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Biology & Biochemistry, 42, 2119–2127.

    Article  CAS  Google Scholar 

  • Fierer, N., Schimel, J., & Holden, P. (2003). Variations in microbial community composition through two soil depth profiles. Soil Biology & Biochemistry, 35, 167–176.

    Article  CAS  Google Scholar 

  • Fontaine, S., Marotti, A., & Abbadie, L. (2003). The priming effect of organic matter: A question of microbial competition. Soil Biology & Biochemistry, 35, 837–843.

    Article  CAS  Google Scholar 

  • Friedel, J. K., Mölter, K., & Fischer, W. R. (1994). Comparison and improvement of methods for determining soil dehydrogenase activity by using triphenyltetrazolium chloride and iodonitrotetrazolium chloride. Biology and Fertility of Soils, 18(4), 291–296.

    Article  CAS  Google Scholar 

  • Frîncu, M., Dumitrache, C., Dumitru, A. C., Cimpeanu, P. C., & Mihai, L. P. (2015). Soil Fertility Assessment through Enzyme Activity. J. Young Sci, 3, 1283–1291.

    Google Scholar 

  • Gajda, A. (2008). Effect of different tillage systems on some microbiological properties of soils under winter wheat. International Agrophysics, 22, 201–208.

    CAS  Google Scholar 

  • Galstyan, A.S. (1978). Unification of methods for studying the activity of soil enzymes. Eurasian Soil Sci, 2, 107–114.

  • Garcia, C., Hernandez, T., & Costa, F. (1997). Potential use of dehydrogenase activity as an index of microbial activity in degraded soils. Communications in Soil Science and Plant Analysis, 28(1–2), 123–134.

    Article  CAS  Google Scholar 

  • Geisseler, D., Horwath, W., & Scow, K. (2011). Soil moisture and plant residue addition interact in their effect on extracellular enzyme activity. Pedobiologia, 54, 71–78.

    Article  Google Scholar 

  • Ghaly, A., & Mahmoud, N. (2006). Optimum conditions for measuring dehydrogenase activity of Aspergillus niger using TTC. American Journal of Biochemistry & Biotechnology, 2, 186–194.

    Article  CAS  Google Scholar 

  • Green, V. S., Stott, D. E., & Diack, M. (2006). Assay for fluorescein diacetate hydrolytic activity: Optimization for soil samples. Soil Biology and Biochemistry, 38(4), 693–701.

    Article  CAS  Google Scholar 

  • Griffiths, B. S. (1989). Improved extraction of iodonitrotetrazolium-formazan from soil with dimethylformamide. Soil Biology & Biochemistry, 21(1), 179–180.

    Article  CAS  Google Scholar 

  • Gu, Y., Wag, P., & Kong, C. (2009). Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soils influenced by allelophatic rice variety. European Journal of Soil Biology, 45, 436–441.

    Article  CAS  Google Scholar 

  • Harris, J. A., & Birch, P. (1989). Soil microbial activity in opencast coal mine restorations. Soil Use and Management, 5(4), 155–160.

    Article  Google Scholar 

  • Hinojosa, M. B., Carreira, J. A., Rodríguez-Maroto, J. M., & García-Ruíz, R. (2008). Effects of pyrite sludge pollution on soil enzyme activities: Ecological dose–response model. Science of the Total Environment, 396(2–3), 89–99.

    Article  CAS  Google Scholar 

  • Hutchinson, G. (1995). Biosphere-atmosphere exchange of gaseous N oxides. In R. Lal (Ed.), Soil and global change (pp. 219–236). CRC Lewis Publisher.

    Google Scholar 

  • Januszek, K. (1993). Seasonal changes of enzyme activity in mor, moder and mull humus of selected forest soils in the Western Beskid Mountains. Folia Forestalia Polonica, 35, 59–75.

    Google Scholar 

  • Joniec, J. (2018). Enzymatic activity as an indicator of regeneration processes in degraded soil reclaimed with various types of waste. International Journal of Environmental Science and Technology, 15(10), 2241–2252.

    Article  CAS  Google Scholar 

  • Kaczyńska, G., Borowik, A., & Wyszkowska, J. (2015). Soil dehydrogenases as an indicator of contamination of the environment with petroleum products. Water, Air, & Soil Pollution, 226(11), 1–11.

    Article  CAS  Google Scholar 

  • Kaurin, A., Cernilogar, Z., & Lestan, D. (2018). Revitalisation of metal-contaminated, EDTA-washed soil by addition of unpolluted soil, compost and biochar: Effects on soil enzyme activity, microbial community composition and abundance. Chemosphere, 193, 726–736.

    Article  CAS  Google Scholar 

  • Killham, K. & Staddon, W.J. (2002). Bioindicators and sensors of soil health and the application of geostatistics. Enzymes in the environment. Marcel Dekkerr, NY, USA, 391–405.

  • Kizilkaya, R., Askin, T., Bayrakli, B., & Saglam, M. (2004). Microbiological characteristics of soils contaminated with heavy metals. European Journal of Soil Biology, 40, 95–102.

    Article  CAS  Google Scholar 

  • Kohler, J., Caravaca, F., Azcón, R., Díaz, G. and Roldán, A. (2015) The combination of compost addition and arbuscular mycorrhizal inoculation produced positive and synergistic effects on the phytomanagement of a semiarid mine tailing. Sci Total Environ 514, 42–48.

  • Klein, D. A., Loh, T. C., & Goulding, R. L. (1971). A rapid procedure to evaluate the dehydrogenase activity of soils low in organic matter. Soil Biology and Biochemistry., 3, 385–387.

    Article  CAS  Google Scholar 

  • Kujur, M., & Patel, A. K. (2012). Comparative assessment of microbial biomass and soil enzyme activities as potential indicators of soil quality in different mine spoil Odisha. Journal of Environment, 1(2), 64–74.

    Google Scholar 

  • Lemanowicz, J., Brzezińska, M., Siwik-Ziomek, A., & Koper, J. (2020). Activity of selected enzymes and phosphorus content in soils of former sulphur mines. Science of The Total Environment, 708, 134545.

    Article  CAS  Google Scholar 

  • Lenhard, G. (1956). Die dehydrogenaseaktivität des bodens als maß für die mikroorganismentätigkeit im boden. Zeitschrift Für Pflanzenernährung, Düngung, Bodenkunde, 73(1), 1–11.

    Article  CAS  Google Scholar 

  • Levyk, V., Maryskevych, O., Brzezińska, M., & Włodarczyk, T. (2007). Dehydrogenase activity of technogenic soils of former sulphur mines (Yvaoriv and Nemyriv, Ukraine). International Agrophysics, 21, 255–260.

    CAS  Google Scholar 

  • Maiti, S.K. (2012). Ecorestoration of the coalmine degraded lands. Springer Science & Business Media.

  • Małachowska-Jutsz, A., & Matyja, K. (2019). Discussion on methods of soil dehydrogenase determination. International Journal of Environmental Science and Technology, 16(12), 7777–7790.

    Article  CAS  Google Scholar 

  • Menon, P., Gopal, M., & Parsad, R. (2005). Effects of chlorpyrifos and quinalphos on dehydrogenase activities and reduction of Fe3+ in the soils of two semi-arid fields of Tropical India. Agriculture, Ecosystems & Environment, 108, 73–83.

    Article  CAS  Google Scholar 

  • Mingorance, M. D., Oliva, S. R., Valdés, B., Gata, F. P., Leidi, E. O., Guzmán, I., & Peña, A. (2014). Stabilized municipal sewage sludge addition to improve properties of an acid mine soil for plant growth. Journal of Soils and Sediments, 14(4), 703–712.

    Article  CAS  Google Scholar 

  • Moeskops, B., Buchan, D., Sleutel, S., Herawaty, L., Husen, E., Saraswati, R., Setyorini, D., & De Neve, S. (2010a). Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java Indonesia. Applied Soil Ecology, 45(2), 112–120.

    Article  Google Scholar 

  • Moeskops, B., Buchan, D., Sleutel, S., Herawaty, L., Husen, E., Saraswati, R., Setyorini, D., & De Neve, S. (2010b). Soil microbial communities and activities under intensive organic and conventional vegetable farming in West Java, Indonesia. Applied Soil Ecology, 45, 112–120.

    Article  Google Scholar 

  • M., Moreno-De Las Heras. (2009). Development of soil physical structure and biological functionality in mining spoils affected by soil erosion in a Mediterranean-Continental environment. Geoderma, 149(3–4), 249–256.

    Google Scholar 

  • Mukhopadhyay, S., George, J., & Masto, R. E. (2017). Changes in polycyclic aromatic hydrocarbons (PAHs) and soil biological parameters in a revegetated coal mine spoil. Land Degradation & Development, 28(3), 1047–1055.

    Article  Google Scholar 

  • Nannipieri, P., Grego, S., & Ceccanti, B. (1990). Ecological significance of the biological activity in soil. In J.-M. Bollag & G. Stotzky (Eds.), Soil biochemistry (Vol. 6, pp. 293–355). Marcel Dekker.

    Google Scholar 

  • Natywa, M., & Selwet, M. (2011). Respiratory and dehydrogenase activities in the soils under maize growth in the conditions of irrigated and nonirrigated fields. Agricultura, 10, 93–100.

    Google Scholar 

  • Navnage, N., Patle, P., & Ramteke, P. (2018). Dehydrogenase activity (DHA): Measure of total microbial activity and as indicator of soil quality. International Journal of Chemical. Studies, 6(1), 456–458.

    CAS  Google Scholar 

  • Nowak, J., Kaklewski, K., & Klódka, D. (2002). Influence of various concentrations of selenic acid (IV) on the activity of soil enzymes. Science of the Total Environment, 291, 105–110.

    Article  CAS  Google Scholar 

  • Pan, J., & Yu, L. (2011). Effects of Cd or/and Pb on soil enzyme activities and microbial community structure. Ecological Engineering, 37, 1889–1894.

    Article  Google Scholar 

  • Paz-Ferreiro, J., & Fu, S. (2016). Biological indices for soil quality evaluation: Perspectives and limitations. Land Degradation & Development, 27(1), 14–25.

    Article  Google Scholar 

  • Peña, A., Mingorance, M. D., & Rossini-Oliva, S. (2015). Soil quality improvement by the establishment of a vegetative cover in a mine soil added with composted municipal sewage sludge. Journal of Geochemical Exploration, 157, 178–183.

    Article  CAS  Google Scholar 

  • Pett-Ridge, J., & Firestone, M. (2005). Redox fluctuation structures microbial communities in a wet-tropical soil. Applied & Environmental Microbiology, 71, 6998–7007.

    Article  CAS  Google Scholar 

  • Pietrzykowski, M., Socha, J., & van Doorn, N. S. (2014). Linking heavy metal bioavailability (Cd, Cu, Zn and Pb) in Scots pine needles to soil properties in reclaimed mine areas. Science of the Total Environment, 470, 501–510.

    Article  CAS  Google Scholar 

  • Piotrowska, A., & Długosz, J. (2012). Spatio–temporal variability of microbial biomass content and activities related to some physicochemical properties of Luvisols. Geoderma, 173, 199–208.

    Article  CAS  Google Scholar 

  • Quilchano, C., & Marañon, T. (2002). Dehydrogenase activity in Mediterranean forest soils. Biology & Fertility of Soils, 35, 102–107.

    Article  CAS  Google Scholar 

  • Roberge, M. R. (1978). Methodology of soil enzyme measurement and extraction. In R. G. Burns (Ed.), Soil enzymes (pp. 341–370). Academic Press.

    Google Scholar 

  • Romero, E., Fernandez-Bayo, J., Diaz, J., & Nogales, R. (2010). Enzyme activities and diuron persistence in soil amended with vermicompost derived from spent grape marc and treated with urea. Applied Soil Ecology, 44, 198–204.

    Article  Google Scholar 

  • Ros, M., Hernandez, M., & Garcia, C. (2003). Soil microbial activity after restoration of a semiarid soil by organic amendments. Soil Biology & Biochemistry, 35, 463–469.

    Article  CAS  Google Scholar 

  • Rossini-Oliva, S., Mingorance, M. D., & Pena, A. (2017). Effect of two different composts on soil quality and on the growth of various plant species in a polymetallic acidic mine soil. Chemosphere, 168, 183–190.

    Article  CAS  Google Scholar 

  • Salazar, S., Sanchez, L., Alvarez, J., Valverde, A., Galindo, P., Igual, J., Peix, A., & Santa- Regina, I. (2011). Correlation among soil enzyme activities under different forest system management practices. Ecological Engineering, 37, 1123–1131.

    Article  Google Scholar 

  • Schäffer A. (1993). Pesticide effects on enzyme activities in the soil ecosystem. Soil Biochemistry, 8, 273–340.

  • Schnürer, J., & Rosswall, T. (1982). Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Applied and Environmental Microbiology, 43(6), 1256–1261.

    Article  Google Scholar 

  • Schumacher, T. E., Eynard, A., & Chintala, R. (2015). Rapid cost-effective analysis of microbial activity in soils using modified fluorescein diacetate method. Environmental Science and Pollution Research, 22(6), 4759–4762.

    Article  CAS  Google Scholar 

  • Shuler, M. & Kargi, F. (2010). Bioprocess engineering basic concepts. Prentice-Hall Incorporation, Englewood Cliffs, New Yersey, USA. ISBN-10: 0130819085.

  • Sinha, S., Masto, R. E., Ram, L. C., Selvi, V. A., Srivastava, N. K., Tripathi, R. C., & George, J. (2009). Rhizosphere soil microbial index of tree species in a coal mining ecosystem. Soil Biology and Biochemistry, 41(9), 1824–1832.

    Article  CAS  Google Scholar 

  • Song, Y., Deng, S., Acosta-Martinez, V., & Katsalirou, E. (2008). Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Applied Soil Ecology, 40, 499–509.

    Article  Google Scholar 

  • Spothelfer-Magana, J., & Thalman, A. (1992). Eine verbesserte methode zur bestimmung der dehydrogenaseaktivitat von böden unter einsatz von iodonitrotetrazoliumchlorid (INT). Agrobiol. Res., 45, 244–256.

    CAS  Google Scholar 

  • Stępniewska, Z., & Wolińska, A. (2005). Soil dehydrogenase activity in the presence of chromium (III) and (VI). International Agrophysics, 19, 79–83.

    Google Scholar 

  • Stępniewski, W.; Stępniewska, Z.; Bennicelli, R. & Gliński, J. (2005). Oxygenology in outline. Institute of Agrophysics Polish Academy of Sciences, pp. 18–33, Lublin, Poland.

  • Stępniewski, W., Stępniewska, Z., Gliński, J., Brzezińska, M., Włodarczyk, T., Przywara, G., Varallyay, G., & Rajkai, J. (2000). Dehydrogenase activity of some Hungarian soils as related to their water and aeration status. International Agrophysics, 14, 341–354.

    Google Scholar 

  • Stevenson, I. L. (1959). Dehydrogenase activity in soils. Canadian Journal of Microbiology, 5(2), 229–235.

    Article  CAS  Google Scholar 

  • Subhani, A., Changyong, H., Zhengmiao, Y., Min, L., & El-ghamry, A. (2001). Impact of soil environment and agronomic practices on microbial/dehydrogenase enzyme activity in soil. A review. Pakistan Journal of Biological Sciences, 4, 333–338.

    Article  Google Scholar 

  • Tabatabai, M.A. (1994). Soil enzymes. Methods of soil analysis: Part 2 Microbiological and biochemical properties, 5, pp.775–833.

  • Thalmann, A. (1968). Zur Methodik der Bestimmung der Dehydrogenaseaktivit~ it im Boden mittels Triphenyltetrazoliumchlorid (TTC). Landwirtschaftliche Forschung, 21, 249–259.

    CAS  Google Scholar 

  • Trasar-Cepeda, C., Gil-Sotres, F., & Leiros, M. (2007). Thermodynamic Parameters of Enzymes in Grassland Soils from Galicia, NW Spain. Soil Biology & Biochemistry, 39, 311–319.

    Article  CAS  Google Scholar 

  • Trevors, J. T. (1984a). Dehydrogenase activity in soil: A comparison between the INT and TTC assay. Soil Biology and Biochemistry, 16, 673–674.

    Article  CAS  Google Scholar 

  • Trevors, J. (1984b). Effect of substrate concentration, inorganic nitrogen, O2 concentration, temperature and pH on dehydrogenase activity in soil. Plant and Soil, 77, 285–293.

    Article  CAS  Google Scholar 

  • Trevors, J. T., Mayfield, C. I., & Inniss, W. E. (1982). Measurement of electron transport system (ETS) activity in soil. Microbial Ecology, 8(2), 163–168.

    Article  CAS  Google Scholar 

  • Tripathi, S., Chakraborty, A., Chakrabarti, K., & Bandyopadhyay, B. (2007). Enzyme activities and microbial biomass in coastal soils of India. Soil Biology & Biochemistry, 39, 2840–2848.

    Article  CAS  Google Scholar 

  • Von Mersi, W., & Schinner, F. (1991). An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biology and Fertility of Soils, 11(3), 216–220.

    Article  Google Scholar 

  • Wall, A., & Heiskanen, J. (2003). Water-retention characteristic and related physical properties of soil on afforested agricultural land in Finland. Forest Ecology & Management, 186, 21–32.

    Article  Google Scholar 

  • Weaver, M., Zablotowicz, R., Krutz, L., Bryson, C., & Locke, M. (2012). Microbial and vegetative changes associated with development of a constructed wetland. Ecological Indicators, 13, 37–45.

    Article  CAS  Google Scholar 

  • Welp, G. (1999). Inhibitory effects of the total and water-soluble concentrations of nine different metals on the dehydrogenase activity of a loess soil. Biology & Fertility of Soils, 30, 132–139.

    Article  CAS  Google Scholar 

  • Włodarczyk, T. (2000). Some aspects of dehydrogenase activity in soils. International Agrophysics, 22, 371–375.

    Google Scholar 

  • Włodarczyk, T., Gliński, J., Stępniewski, W., Stępniewska, Z., Brzezińska, M., & Kuraz, V. (2001). Aeration properties and enzyme activity on the example of Arenic Chernozem (Tisice). International Agrophysics, 15, 131–138.

    Google Scholar 

  • Włodarczyk, T., Stępniewski, W., & Brzezińska, M. (2002). Dehydrogenase activity, redox potential, and emissions of carbon dioxide and nitrous oxide from Cambisols under flooding conditions. Biology & Fertility of Soils, 36, 200–206.

    Article  CAS  Google Scholar 

  • Wolińska, A., & Bennicelli, R. (2010). Dehydrogenase activity response to soil reoxidation process described as varied condition of water potential, air porosity and oxygen availability. Polish Journal of Environmental Studies, 19, 651–657.

    Google Scholar 

  • Wolińska, A. & Stępniewska, Z. (2011). Microorganisms abundance and dehydrogenase activity as a consequence of soil reoxidation process, In: Soil tillage & microbial activities, M. Miransari, (Ed.), 111–143, Research Singpost, Kerala, India

  • Wolińska, A. (2010). Dehydrogenase activity of soil microorganisms and oxygen availability during reoxidation process of the selected mineral soils from Poland. Acta Agrophysica, 180, 1–88. (in Polish with English Summary).

    Google Scholar 

  • Wolińska, A. & Stępniewska, Z. (2012). Dehydrogenase activity in the soil environment. Dehydrogenases, 183–210.

  • Wyszkowska, J., Kucharski, J., Jastrzębska, E., & Hlasko, A. (2001). The biological properties of soil as influenced by chromium contamination. Polish Journal of Environmental Studies, 10, 37–42.

    CAS  Google Scholar 

  • Xian, Y., Wang, M., & Chen, W. (2015). Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere, 139, 604–608.

    Article  CAS  Google Scholar 

  • Xiang, S., Doyle, A., Holden, P., & Schimel, J. (2008). Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology & Biochemistry, 40, 2281–2289.

    Article  CAS  Google Scholar 

  • Xie, W., Zhou, J., Wang, H., Chen, X., Lu, Z., Yu, J., & Chen, X. (2009). Short-term effects of copper, cadmium and cypermethrin on dehydrogenase activity and microbial functional diversity in soils after long-term mineral or organic fertilization. Agriculture, Ecosystems & Environment, 129, 450–456.

    Article  CAS  Google Scholar 

  • Xu, H., Ren, Y., Zhao, T. & He, Y. (2008). Research on the woodland soil enzyme activities in coal mining subsidence area. In 2008 2nd International Conference on Bioinformatics and Biomedical Engineering (pp. 4237–4240). IEEE.

  • Yuan, B., & Yue, D. (2012). Soil microbial and enzymatic activities across a chronosequence of Chinese pine plantation development on the Loess Plateau of China. Pedosphere, 22, 1–12.

    Article  CAS  Google Scholar 

  • Zhang, J., Yang, S., Yang, H., Huang, Y., Zheng, L., Yuan, J., & Zhou, S. (2018). Comparative study on effects of four energy plants growth on chemical fractions of heavy metals and activity of soil enzymes in copper mine tailings. International Journal of Phytoremediation, 20(6), 616–623.

    Article  CAS  Google Scholar 

  • Zhang, Y. L., Chen, L. J., Chen, X. H., Tan, M. L., Duan, Z. H., Wu, Z. J., Li, X. J., & Fan, X. H. (2015). Response of soil enzyme activity to long-term restoration of desertified land. CATENA, 133, 64–70.

    Article  CAS  Google Scholar 

  • Zhang, N., He, X., Gao, Y., Li, Y., Wang, H., Ma, D., Zhang, R., & Yang, S. (2010). Pedogenic carbonate and soil dehydrogenase activity in response to soil organic matter in Artemisia ordosica community. Pedosphere, 20, 229–235.

    Article  CAS  Google Scholar 

  • Zhao, B., Chen, J., Zhang, J., & Qin, S. (2010). Soil microbial biomass and activity response to repeated drying-rewetting cycles along a soil fertility gradient modified by long-term fertilization management practices. Geoderma, 160, 218–224.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author is grateful to Indian Institute of Technology (Indian School of Mines), Dhanbad and MHRD, Government of India, for providing scholarship to the first author (17DR000508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subodh Kumar Maiti.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bandyopadhyay, S., Maiti, S.K. Different Soil Factors Influencing Dehydrogenase Activity in Mine Degraded Lands—State-of-Art Review. Water Air Soil Pollut 232, 360 (2021). https://doi.org/10.1007/s11270-021-05302-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05302-0

Keywords

Navigation