Skip to main content
Log in

Re-Examination of Proline-Catalyzed Intermolecular Aldol Reactions: An Ab Initio Kinetic Modelling Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

The full catalytic cycle of the proline-catalyzed intermolecular aldol reaction of acetone and p-nitrobenzaldehyde in acetone solvent has been investigated by quantum chemistry at the G3(MP2,CC)//M062X/6–31+G(d)/SMD level of theory, and the results used to develop an ab initio kinetic model. Proline catalyzes the aldol reaction according to the enamine mechanism. The initial reaction between proline and acetone was reinvestigated, and a revised mechanism for enamine formation is proposed in which a second proline assists the process contributing to the enamine formation. Using various initial concentrations of proline while keeping the experimental ratio of water, aldehyde and acetone constant, we find that the enamine formation from the first-order to proline pathway dominates when the concentration of proline is low (< 0.005 M); while the second-order enamine formation pathways contribute and then dominate as the proline concentration is increased. The relative rates of formation of the syn and anti-enamine are not important, as these interconvert via C–N bond rotation and equilibrate faster than their subsequent reaction, which follows the standard Houk/List mechanism. While the stereochemistry can be predicted from an analysis of the alternative C–C bond formation pathways, their relative contributions to the major and minor product yields are influenced by their subsequent rates of hydrolysis. Indeed, while C–C bond formation is normally considered rate determining, our kinetic simulations show that the kinetic model is more complicated than this and under typically used concentrations, the process of initial enamine formation, C–C bond formation and the initial stages of product release all contribute to the overall reaction rate. Using our kinetic model, we predict that yield and %ee are optimal for concentrations of [proline] = 0.005 M, [acetone] = 2.25 M, [aldehyde] = 0.1 M, and [water] = 0.6 M. Using excess acetone (up to 2.6 M) increases both conversion and %ee. Excess aldehyde increases %ee but decreases conversion, and excess catalyst increases the conversion but decreases %ee. Aside from the indirect effect of increasing the solubility of the proline catalyst, water increases both conversion and %ee up to a point, but at large concentrations (> 1.0 M) excess water is expected to decrease %ee. Side reactivity, including aldol condensation, acetone self-aldolization, oxazolidinone formation and azomethine and 1-oxapyrrolizidine formation were all considered in our kinetic model but shown to have a negligible effect (< 2%) on the yield and %ee over the full range of reaction conditions investigated.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Scheme 3
Scheme 4
Fig. 1
Scheme 5
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eder U, Sauer G, Wiechert R (1971) New type of asymmetric cyclization to optically active steroid CD partial structures. Angew Chem Int Ed 10:496–497

    Article  CAS  Google Scholar 

  2. Hajos ZG, Parrish DR (1974) Asymmetric synthesis of bicyclic intermediates of natural product chemistry. J Org Chem 39:1615–1621

    Article  CAS  Google Scholar 

  3. List B, Lerner RA, Barbas CF (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    Article  CAS  Google Scholar 

  4. Jung ME (1976) A review of annulation. Tetrahedron 32:3–31

    Article  CAS  Google Scholar 

  5. Puchot C, Samuel O, Dunach E, Zhao S, Agami C, Kagan H (1986) Nonlinear effects in asymmetric synthesis. Examples in asymmetric oxidations and aldolization reactions. J Am Chem Soc 108:2353–2357

    Article  CAS  PubMed  Google Scholar 

  6. List B, Hoang L, Martin HJ (2004) New mechanistic studies on the proline-catalyzed aldol reaction. Proc Natl Acad Sci USA 101:5839–5842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bahmanyar S, Houk KN (2001) Transition states of amine-catalyzed aldol reactions involving enamine intermediates: theoretical studies of mechanism, reactivity, and stereoselectivity. J Am Chem Soc 123:11273–11283

    Article  CAS  PubMed  Google Scholar 

  8. Bahmanyar S, Houk KN (2001) The origin of stereoselectivity in proline-catalyzed intramolecular aldol reactions. J Am Chem Soc 123:12911–12912

    Article  CAS  PubMed  Google Scholar 

  9. Bahmanyar S, Houk KN (2003) Origins of opposite absolute stereoselectivities in proline-catalyzed direct Mannich and aldol reactions. Org Lett 5:1249–1251

    Article  CAS  PubMed  Google Scholar 

  10. Bahmanyar S, Houk KN, Martin HJ, List B (2003) Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J Am Chem Soc 125:2475–2479

    Article  CAS  PubMed  Google Scholar 

  11. Clemente FR, Houk KN (2004) Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew Chem 116:5890–5892

    Article  Google Scholar 

  12. Zhu H, Clemente FR, Houk KN, Meyer MP (2009) Rate limiting step precedes C–C bond formation in the archetypical proline-catalyzed intramolecular aldol reaction. J Am Chem Soc 131:1632–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Armstrong A, Boto RA, Dingwall P, Contreras-García J, Harvey MJ, Mason NJ, Rzepa HS (2014) The Houk-List transition states for organocatalytic mechanisms revisited. Chem Sci 5:2057–2071

    Article  CAS  Google Scholar 

  14. Rajagopal D, Moni M, Subramanian S, Swaminathan S (1999) Proline mediated asymmetric ketol cyclization: a template reaction. Tetrahedron Asymmetry 10:1631–1634

    Article  CAS  Google Scholar 

  15. Rankin KN, Gauld JW, Boyd RJ (2002) Density functional study of the proline-catalyzed direct aldol reaction. J Phys Chem A 106:5155–5159

    Article  CAS  Google Scholar 

  16. Arnó M, Domingo LR (2002) Density functional theory study of the mechanism of the proline-catalyzed intermolecular aldol reaction. Theor Chem Acc 108:232–239

    Article  Google Scholar 

  17. Ajitha MJ, Suresh CH (2011) A higher energy conformer of (S)-proline is the active catalyst in intermolecular aldol reaction: evidence from DFT calculations. J Mol Catal A Chem 345:37–43

    Article  CAS  Google Scholar 

  18. Sharma AK, Sunoj RB (2010) Enamine versus oxazolidinone: what controls stereoselectivity in proline-catalyzed asymmetric aldol reactions? Angew Chem Int Ed 122:6517–6521

    Article  Google Scholar 

  19. Yu L-J, Coote ML (2021) Electrostatic switching of stereoselectivity in aldol reactions. J Org Chem 86:9076–9083

    Article  CAS  PubMed  Google Scholar 

  20. Bock DA, Lehmann CW, List B (2010) Crystal structures of proline-derived enamines. Proc Natl Acad Sci USA 107:20636–20641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Schmid MB, Zeitler K, Gschwind RM (2010) The elusive enamine intermediate in proline-catalyzed aldol reactions: NMR detection, formation pathway, and stabilization trends. Angew Chem 49:4997–5003

    Article  CAS  Google Scholar 

  22. Zotova N, Franzke A, Armstrong A, Blackmond DG (2007) Clarification of the role of water in proline-mediated aldol reactions. J Am Chem Soc 129:15100–15101

    Article  CAS  PubMed  Google Scholar 

  23. Zotova N, Broadbelt LJ, Armstrong A, Blackmond DG (2009) Kinetic and mechanistic studies of proline-mediated direct intermolecular aldol reactions. Bioorg Med Chem Lett 19:3934–3937

    Article  CAS  PubMed  Google Scholar 

  24. Zotova N, Moran A, Armstrong A, Blackmond DG (2009) A coherent mechanistic rationale for additive effects and autoinductive behaviour in proline-mediated reactions. Adv Synth Catal 351:2765–2769

    Article  CAS  Google Scholar 

  25. Mathew SP, Klussmann M, Iwamura H, Wells JDH, Armstrong A, Blackmond DG (2006) A mechanistic rationalization of unusual kinetic behavior in proline-mediated C–O and C–N bond-forming reactions. Chem Commun. https://doi.org/10.1039/B609926B

    Article  Google Scholar 

  26. Hoang L, Bahmanyar S, Houk KN, List B (2003) Kinetic and stereochemical evidence for the involvement of only one proline molecule in the transition states of proline-catalyzed intra-and intermolecular aldol reactions. J Am Chem Soc 125:16–17

    Article  CAS  PubMed  Google Scholar 

  27. Orsini F, Pelizzoni F, Forte M, Sisti M, Bombieri G, Benetollo F (1989) Behaviour of aminoacids and aliphatic aldehydes in dipolar aprotic solvents: Formation of oxazolidinones—behaviour of aminoacids and aliphatic aldehydes in dipolar aprotic solvents. J Heterocycl Chem 26:837–841

    Article  CAS  Google Scholar 

  28. Seebach D, Beck AK, Badine DM, Limbach M, Eschenmoser A, Treasurywala AM, Hobi R, Prikoszovich W, Linder B (2007) Are oxazolidinones really unproductive, parasitic species in proline catalysis?—Thoughts and experiments pointing to an alternative view. Helv Chim Acta 90:425–471

    Article  CAS  Google Scholar 

  29. Frisch M, Trucks G, Schlegel H, Scuseria G, Robb M, Cheeseman J, Scalmani G, Barone V, Petersson G, Nakatsuji H et al (2016) Gaussian 09, Revision E 01. Gaussian Inc, Wallingford CT

    Google Scholar 

  30. Werner H, Knowles P, Knizia G, Manby F, Schütz M, Celani P, Györffy W, Kats D, Korona T, Lindh R, al. e (2015) MOLPRO, version 2015.1, a package of ab initio programs.

  31. Izgorodina EI, Lin CY, Coote ML (2007) Energy-directed tree search: an efficient systematic algorithm for finding the lowest energy conformation of molecules. Phys Chem Chem Phys 9:2507–2516

    Article  CAS  PubMed  Google Scholar 

  32. Ho JM, Klamt A, Coote ML (2010) Comment on the correct use of continuum solvent models. J Phys Chem A 114:13442–13444

    Article  CAS  PubMed  Google Scholar 

  33. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  PubMed  Google Scholar 

  34. Xu L, Coote ML (2019) Methods to improve the calculations of solvation model density solvation free energies and associated aqueous pKa values: comparison between choosing an optimal theoretical level, solute cavity scaling, and using explicit solvent molecules. J Phys Chem A 123:7430–7438

    Article  CAS  PubMed  Google Scholar 

  35. Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor Chem Acc 120:215–241

    Article  CAS  Google Scholar 

  36. Alecu I, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887

    Article  CAS  PubMed  Google Scholar 

  37. Curtiss LA, Raghavachari K, Redfern PC, Baboul AG, Pople JA (1999) Gaussian-3 theory using coupled cluster energies. Chem Phys Lett 314:101–107

    Article  CAS  Google Scholar 

  38. O’Neil MJ (ed) (2018) The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  39. Wolfram Research I (2019) Mathematica. Version, 12.0. Wolfram Research, Inc., Champaign, Illinois

    Google Scholar 

  40. Blyth MT, Coote ML (2019) A pH-Switchable Electrostatic Catalyst for the Diels-Alder Reaction: Progress toward Synthetically Viable Electrostatic Catalysis. J Org Chem 84:1517–1522

    Article  PubMed  Google Scholar 

  41. Tóth J, Nagy AL, Papp D (2018) The Induced Kinetic Differential Equation. In: Tóth J, Nagy AL, Papp D (eds) Reaction Kinetics: Exercises, Programs, and Theorems. Springer, New York

    Google Scholar 

  42. Zhang X, Houk KN (2005) Acid/base catalysis by pure water: the aldol reaction. J Org Chem 70:9712–9716

    Article  CAS  PubMed  Google Scholar 

  43. IUPAC. Compendium of Chemical Terminology, 2nd ed. (the "Gold Book"). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). Online version (2019-) created by S. J. Chalk. ISBN 0-9678550-9-8. https://doi.org/10.1351/goldbook.

  44. Reymond J-L, Chen Y (1995) Catalytic, enantioselective aldol reaction with an artificial aldolase assembled from a primary amine and an antibody. J Org Chem 60:6970–6979

    Article  CAS  Google Scholar 

  45. Reymond J-L (1998) Stereoselectivity of aldolase catalytic antibodies. J Mol Catal B Enzym 5:331–337

    Article  CAS  Google Scholar 

  46. Nyberg AI, Usano A, Pihko PM (2004) Proline-catalyzed ketone-aldehyde aldol reactions are accelerated by water. Synlett 2004:1891–1896

    Article  Google Scholar 

  47. Klussmann M, Mathew SP, Iwamura H, Wells DH Jr, Armstrong A, Blackmond DG (2006) Kinetic rationalization of nonlinear effects in asymmetric catalysis based on phase behavior. Angew Chem Int Ed 45:7989–7992

    Article  CAS  Google Scholar 

  48. Kozuch S, Martin JML (2011) The Rate-Determining Step is Dead Long Live the Rate-Determining State! ChemPhysChem 12:1413–1418

    Article  CAS  PubMed  Google Scholar 

  49. Cheong PH-Y, Legault CY, Um JM, Çelebi-Ölçüm N, Houk KN (2011) Quantum mechanical investigations of organocatalysis: mechanisms, reactivities, and selectivities. Chem Rev 111:5042–5137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Australian Research Council (ARC) Centre of Excellence for Electromaterials Science, an ARC Laureate Fellowship (to M.L.C.), and generous supercomputing time from the National Computational Infrastructure. The authors acknowledge helpful discussions with Dr. Stephen Dale.

Funding

Australian Research Council (FL170100041, CE140100012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Coote.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (pdf 4445 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, LJ., Blyth, M.T. & Coote, M.L. Re-Examination of Proline-Catalyzed Intermolecular Aldol Reactions: An Ab Initio Kinetic Modelling Study. Top Catal 65, 354–365 (2022). https://doi.org/10.1007/s11244-021-01501-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01501-5

Keywords

Navigation