Skip to main content
Log in

SiNx:H Films for Efficient Bulk Passivation of Nonconventional Wafers for Silicon Heterojunction Solar Cells

  • Nanomaterials and Composites for Energy Conversion and Storage
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Hydrogenated silicon nitride films (SiNx:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) have been studied to passivate defects with hydrogen in the bulk of multicrystalline silicon wafers. Extensive analysis of the PECVD process was carried out to identify the parameters that control the SiNx:H material composition and that mainly influence its mass density and hydrogen content. In addition, the incorporation of a hydrogen gas flow is presented as a strategy to increase the refractive index while enhancing the mass density. Satisfactory results in terms of the effective minority-carrier lifetime of the wafers have been achieved with highly hydrogenated SiNx:H films and with slightly hydrogenated films densified by introducing a hydrogen flow, evincing the importance of the mass density in the passivation process. These hydrogenated wafers could be employed in silicon heterojunction solar cell fabrication, improving their quality, reducing their costs, and enhancing their sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.E. Kaloyeros, F.A. Jové, J. Goff, and B. Arkles, ECS J. Solid State Sci. Technol. 6, 691. https://doi.org/10.1149/2.0011710jss (2017).

    Article  Google Scholar 

  2. C. Sun, W. Weigand, J. Shi, Z. Yu, R. Basnet, S.P. Phang, Z.C. Holman, and D. Maconald, Appl. Phys. Lett. 115, 252103. https://doi.org/10.1063/1.5132368 (2019).

    Article  Google Scholar 

  3. F. Duerinckx, J. Szlufcik. Sol. Energy Mater. Sol. Cells. 72, 231. https://doi.org/10.1016/S0927-0248(01)00170-2 (2002).

    Article  Google Scholar 

  4. D.H. Neuhaus, and A. Münzer, Adv. Optoelectron. https://doi.org/10.1155/2007/24521 (2007).

    Article  Google Scholar 

  5. M. Lipiński, Arch. Mater. Sci. Eng. 46, 69. (2010).

    Google Scholar 

  6. C. Trassy, S. Martinuzzi, J. Degoulange, and I. Pe, Sol. Energy Mater. Sol. Cells. 92, 1269. https://doi.org/10.1016/j.solmat.2008.04.020 (2008).

    Article  Google Scholar 

  7. R. Chen, H. Tong, H. Zhu, C. Ding, H. Li, D. Chen, B. Hallam, C.M. Chong, S. Wenham, and A. Ciesla, Prog. Photovolt. Res. Appl. https://doi.org/10.1002/pip.3243 (2020).

    Article  Google Scholar 

  8. P. Panek, and M. Lipinski, Opto-Electron. Rev. 11(4), 269. (2003).

    Google Scholar 

  9. N. Jensen, R.M. Hausner, R.B. Bergmann, J.H. Werner, and U. Rau, Prog. Photovolt. Res. Appl. 10, 1. https://doi.org/10.1002/pip.398 (2002).

    Article  Google Scholar 

  10. M. Taguchi, A. Terakawa, E. Maruyama, and M. Tanaka, Prog. Photovolt. Res. Appl. 13, 481. https://doi.org/10.1002/pip.646 (2005).

    Article  Google Scholar 

  11. D. Chen, M. Kim, J. Shi, B. Vicari Stefani, Z. Yu, S. Liu, R. Einhaus, S. Wenham, Z. Holman, and B. Hallam, Prog. Photovolt. Res. Appl. https://doi.org/10.1002/pip.3230 (2019).

    Article  Google Scholar 

  12. H. Park, Y.J. Lee, J. Park, Y. Kim, J. Yi, Y. Lee, S. Kim, C.K. Park, and K.J. Lim, Trans. Electr. Electron. Mater. 19, 165. https://doi.org/10.1007/s42341-018-0026-8 (2018).

    Article  Google Scholar 

  13. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto, Nat. Energy. https://doi.org/10.1038/nenergy.2017.32 (2017).

    Article  Google Scholar 

  14. W. van Sark, L. Korte, and F. Roca, Physics and Technology of Amorphous-Crystalline Heterostructure Silicon Solar Cells (Springer, Berlin, 2012).

    Book  Google Scholar 

  15. M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, IEEE J. Photovolt. 4, 9. (2014).

    Article  Google Scholar 

  16. A. Louwen, W. Van Sark, R. Schropp, and A. Faaij, Sol. Energy Mater. Sol. Cells. 147, 295. https://doi.org/10.1016/j.solmat.2015.12.026 (2016).

    Article  Google Scholar 

  17. International Renewable Energy Agency - IRENA, Future of solar photovoltaic Deployment, investment, technology, grid integration and socio-economic aspects (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Oct/IRENA_Future_of_wind_2019.pdf.

  18. R. Barrio, J.J. Gandía, J. Cárabe, N. González, I. Torres, D. Muñoz, and C. Voz, Sol. Energy Mater. Sol. Cells. 94, 282. https://doi.org/10.1016/j.solmat.2009.09.017 (2010).

    Article  Google Scholar 

  19. N. Maley, Phys. Rev. B 46, 2078. (1992).

    Article  Google Scholar 

  20. M.H. Brodsky, M. Cardona, and J.J. Cuomo, Phys. Rev. B. 16, 3556. (1977).

    Article  Google Scholar 

  21. A.A. Langford, M.L. Fleet, and A.H. Mahan, Sol. Cells. 27, 373. https://doi.org/10.1016/0379-6787(89)90046-X (1989).

    Article  Google Scholar 

  22. O. Gabriel, T. Frijnts, S. Calnan, S. Ring, S. Kirner, A. Opitz, I. Rothert, H. Rhein, M. Zelt, K. Bhatti, J.H. Zollondz, A. Heidelberg, J. Haschke, D. Amkreutz, S. Gall, F. Friedrich, B. Stannowski, B. Rech, and R. Schlatmann, IEEE J. Photovolt. 4, 1343. https://doi.org/10.1109/JPHOTOV.2014.2354257 (2014).

    Article  Google Scholar 

  23. A. Cuevas, and D. Macdonald, Sol. Energy 76, 255. https://doi.org/10.1016/j.solener.2003.07.033 (2004).

    Article  Google Scholar 

  24. R.A. Sinton, A. Cuevas, and M. Stuckings, Twenty Fifth IEEE Photovolt. Spec. Conf. 1996, 457. https://doi.org/10.1109/PVSC.1996.564042 (1996).

    Article  Google Scholar 

  25. A. Cuevas, R.A. Sinton, M. Kerr, D. Macdonald, and H. Mäckel, Sol. Energy Mater. Sol. Cells. 71, 295. https://doi.org/10.1016/S0927-0248(01)00089-7 (2002).

    Article  Google Scholar 

  26. R. Jayakrishnan, S. Gandhi, and P. Suratkar, Mater. Sci. Semicond. Process. 14, 223. https://doi.org/10.1016/j.mssp.2011.02.020 (2011).

    Article  Google Scholar 

  27. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981).

    Google Scholar 

  28. K.V. Shalimova, Física de los semiconductores (Mir, Moscú, 1975).

    Google Scholar 

  29. E. Herth, H. Desré, E. Algré, C. Legrand, and T. Lasri, Microelectron. Reliab. 52, 141. https://doi.org/10.1016/j.microrel.2011.09.004 (2012).

    Article  Google Scholar 

  30. V. Verlaan, A.D. Verkerk, W.M. Arnoldbik, C.H.M. van der Werf, R. Bakker, Z.S. Houweling, I.G. Romijn, D.M. Borsa, A.W. Weeber, S.L. Luxembourg, M. Zeman, H.F.W. Dekkers, and R.E.I. Schropp, Thin Solid Films 517, 3499. https://doi.org/10.1016/j.tsf.2009.01.065 (2009).

    Article  Google Scholar 

  31. J.F. Lelièvre, E. Fourmond, A. Kaminski, O. Palais, D. Ballutaud, and M. Lemiti, Sol. Energy Mater. Sol. Cells. 93, 1281. https://doi.org/10.1016/j.solmat.2009.01.023 (2009).

    Article  Google Scholar 

  32. J. Hong, W.M.M. Kessels, W.J. Soppe, A.W. Weeber, W.M. Arnoldbik, and M.C.M. Van de Sanden, J. Vac. Sci. Technol. B: Microelectron. Nanom. Struct. 21, 2123. https://doi.org/10.1116/1.1609481 (2003).

    Article  Google Scholar 

  33. J. Robertson, Philos. Mag. B Phys. 69, 307. https://doi.org/10.1080/01418639408240111 (1994).

    Article  Google Scholar 

  34. H.F.W. Dekkers, G. Beaucarne, M. Hiller, H. Charifi, and A. Slaoui, Appl. Phys. Lett. 89, 211914. https://doi.org/10.1063/1.2396900 (2006).

    Article  Google Scholar 

  35. H.F.W. Dekkers, L. Carnel, and G. Beaucarne, Appl. Phys. Lett. 89, 013508. https://doi.org/10.1063/1.2219142 (2006).

    Article  Google Scholar 

  36. M. Stavola, F. Jiang, S. Kleekajai, L. Wen, C. Peng, V. Yelundur, A. Rohatgi, G. Hahn, and L. Camel, J. Kalejs. Mater. Res. Soc. Symp. Proc. 1210, 3–13. https://doi.org/10.1557/proc-1210-q01-01 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

This work has been funded by the Spanish of Ministry of Economy and Competitiveness under projects CHENOC ‘Silicon HEterojunction solar cells in Non-Conventional structures’ (ENE2016-78933-C4-3-R). Program Oriented to the Challenges of the Society - Spain National Plan for Scientific and Technical Research and Innovation 2013-2016. The authors would like to thank the Unit of Microstructural and Microanalysis Characterization of CIEMAT for XPS measurements and the CAI of Physic-UCM for RTA treatments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rocío Barrio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio, R., Gonzalez, N. & Gandía, J.J. SiNx:H Films for Efficient Bulk Passivation of Nonconventional Wafers for Silicon Heterojunction Solar Cells. JOM 73, 2781–2789 (2021). https://doi.org/10.1007/s11837-021-04761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-021-04761-4

Navigation